

AFRL-IF-RS-TR-2005-49
Final Technical Report
February 2005

THE GENESIS OF CYBERSCIENCE AND ITS
MATHEMATICAL MODELS (CYBERSCIENCE)

SRI International, System Design Laboratory

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J799

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-49 has been reviewed and is approved for publication

APPROVED: /s/

NANCY A. ROBERTS
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES A. COLLINS, Acting Chief
Advanced Computing Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
FEBRUARY 2005

3. REPORT TYPE AND DATES COVERED
Final Mar 00 – Feb 04

4. TITLE AND SUBTITLE
THE GENESIS OF CYBERSCIENCE AND ITS MATHEMATICAL MODELS
(CYBERSCIENCE)

6. AUTHOR(S)
Steven Dawson

5. FUNDING NUMBERS
C - F30602-00-C-0087
PE - 62301E
PR - IAST
TA - 00
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SRI International, System Design Laboratory
333 Ravenswood Avenue
Menlo Park California 94025-3493

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-49

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Nancy R. Roberts/IFTB/(315) 330-3566/ Nancy.Roberts@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The Cyberscience project has developed a framework for an integrated approach to secure systems development
called security co-design. Acknowledging the need to integrate security into the development process from the
beginning, but recognizing that security and functionality are different in character, security co-design separates
development into security and functional tracks that strongly influence each other. The security co-design methodology
aims to account for all critical aspects of development, including requirements capture, implementation, and the
construction of an information assurance case (IAC). By analogy to safety cases, an IAC seeks to establish that the
security requirements of the system are met, and to identify specific points of failure to be addressed if certain
requirements are not met. The development of a methodology and tool support for the construction of IACs has been
the primary focus of the Cyberscience project. This report documents the security co-design methodology, the principles
and goals of IAC development, an exploration of tool support for IAC construction, and an examination of possible
alternative approaches.

15. NUMBER OF PAGES
82

14. SUBJECT TERMS
Computer Security, Secure Systems, Systems Development, Information Assurance,
Information Assurance Case 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 Table of Contents

1 Introduction 1

2 Security Co-design 4

2.1 Rationale . 5

2.2 A Framework for Security Co-design . 8

3 Information Assurance Cases 15

3.1 Safety Cases . 18

3.2 SEAS as an IAC tool . 23

3.3 IAC Construction and Maintenance . 26

4 Test Cases for the IAC Concept 28

4.1 An IAC for DIT . 28

4.2 An IAC for an Intrusion-Tolerant JBI . 33

4.2.1 A Defense-Enabled JBI . 34

4.2.2 The Design-Level IAC for DPASA 38

5 Alternative Approaches 47

5.1 Engineering Guidelines for Secure Systems 47

5.2 Security Evaluation . 48

i

5.3 Security Requirements Engineering 49

5.4 Technologies for Assembling Evidence 50

5.4.1 Safety Case Development . 50

5.4.2 Software/Hardware Co-design .51

5.4.3 KAOS . 52

5.4.4 UML . 53

5.4.5 Ada Programming Support Environments 54

5.4.6 Knowledge-Based Software Assistant 55

5.4.7 Literate Programming . 56

6 Lessons Learned 58

6.1 Security Co-design . 58

6.2 Experience with SEAS for IACs .59

6.2.1 Strengths of SEAS . 60

6.2.2 Shortcomings of SEAS . 61

7 Acknowledgments 66

References 67

ii

 List of Figures

1 Security co-design method . 9

2 Architecture of the DIT system. 30

3 Structure of the design assurance argument for the DIT system. 33

4 Structure of a notional JBI. 36

5 Architecture of a DPASA IT-JBI core quadrant. 39

6 Decomposition of top-level requirements. 44

7 High-level structure of IAC. 46

iii

1 Introduction

The serious study of security in computer systems has existed for nearly as long as com-

puter systems themselves. From the beginning it has been recognized that security is dif-

ficult to get right, even for systems that, by today’s standards, would be considered rea-

sonably self-contained and isolated from other systems. Today, we are faced with both the

growing difficulty of information security and the criticalimportance that it be done well.

Information systems are growing ever larger, and their interactions with other systems are

growing more complex. They also face increased exposure to vulnerable infrastructure and

attacks from increasingly sophisticated adversaries. Simultaneously, the world is becom-

ing increasingly dependent on information systems in all aspects of human endeavor, and

improving their security is vital. Almost daily there are new reports of security breaches

on systems at all levels, from personal computers used for e-mail, shopping, and personal

finance, to the large e-business servers through which a growing portion of the world’s

business is conducted. Increased attention to security is needed not only to stem the more

immediate and short-term damage that results from these breaches, but also to preserve and

build confidence in the information infrastructure.

Despite broad acknowledgment that information security isa growing problem, and one no

longer confined to the largest and traditionally most security-conscious organizations, there

appears to be little agreement on how the problem should be addressed. However, there is

general agreement, at least within the security research community, on characteristics of

approaches that do not work and on those that can be expected to be more successful. For

example, it has been demonstrated repeatedly that securityis difficult to retrofit to sys-

tems not designed with security in mind. While security technologies such as firewalls,

cryptography, and anti-virus software clearly help, they invariably leave vulnerabilities to

be exploited, as demonstrated by the continuing success of new attacks against ubiquitous

1

PC software such as OutlookTM and super-user daemons in Unix. Furthermore, security

cannot be considered in isolation — interactions with the environment and other systems

must be taken into account [CMS01] — as the recent concern over cross-site scriptingvul-

nerabilities in Web servers amply demonstrates. As is now widely argued [Neu95, Olt01],

security must be treated as asystemsissue if it is to be successful. Security must be an

integral part of system development.

To begin to address the needs of secure systems development,the Cyberscience project1

at SRI has developed a framework for an integrated approach to secure systems devel-

opment calledsecurity co-design. Acknowledging the need to integrate security into the

development process from the beginning, but recognizing that security and functionality

are different in character, the security co-design approach separates the development effort

into security and functional tracks that strongly influenceeach other.

Needs of Secure Systems Development Broadly speaking, any approach to secure sys-

tems development needs to address three main issues:

1. Requirements: getting the security requirements right and expressing them in a way

that is useful to the rest of the development process

2. Implementation: building the system to meet its security requirements and maintain-

ing compliance with the requirements throughout the life cycle of the system.

3. Information assurance (IA) case: making a convincing, auditable, maintainable case

that the implemented system does (or does not) meet its security requirements.

1As a historical note, the name “Cyberscience” was chosen forthis project as originally proposed to

DARPA ATO for the development of a mathematical theory and related set of tools for reasoning about

cyberspace phenomena. The project was subsequently moved to the OASIS program in DARPA IPTO and

refocused on research in the development of secure systems,but the original project name was retained.

2

The importance of determining the actual security requirements of a system cannot be over-

stated. In an analysis of computer security problems [Neu95], Neumann identifies require-

ments failure as a contributing deleterious cause in all buttwo specific events and in at least

some events in all general categories of security failures.In addition, a recent symposium

devoted to the topic of security requirements engineering [Pur01] is indicative of the in-

creased attention in the security community to the requirements issue. The implementation

issue, of course, covers all implementation-related phases of system development: design,

implementation, testing, deployment, and maintenance. Security requirements must be

accounted for in all phases.

A perhaps less obvious, but no less important, issue is the construction of an information

assurance case (IAC). By analogy to safety cases [BS93, WKM97, BB98], an IAC seeks to

establish convincingly that the security requirements of the realized system are met, and to

identify specific points of failure to be addressed in the event that certain requirements are

not met. The IAC can be used by system developers in maintaining information assurance

throughout the lifetime of the system, by system assessors to minimize potential liability

risk, by certification teams who must certify system compliance with relevant regulations,

and by management to ensure acceptable implementation and maintenance costs.

The development of a methodology and tool support for the construction and maintenance

of IACs has been the primary focus of the Cyberscience project. This report documents

the Cyberscience team’s progress on this development, including the security co-design

methodology itself, the principles underlying the conceptof an IAC, the goals of IAC

development, and an exploration of tool support for IAC construction and maintenance,

including both an initial Cyberscience-developed approach and an examination of possible

alternative approaches.

3

2 Security Co-design

The main thrust of the Cyberscience project has been the development of a framework and

methodology for development of secure systems. We call our approachsecurity co-design,

by analogy with hardware/software co-design [BR95, De 94, FP91, KL94, KAJW93] and

influenced by relevant work in dependable software architectures [GRS99, HDRS99, MXR95,

MQRG97, Rie99] and the development of safety-critical systems [Lev95, MOD96, IEC95].

One basic tenet of the security co-design approach is that security considerations are as

fundamental to system development as functional considerations and must therefore be in-

tegrated into the development process from the beginning. Another is that the skills and

expertise required for security work are not the same as those required for functional devel-

opment, and it is not reasonable to expect or require all members of the development team

to be experts on how to achieve both safety and security. These observations lead to one

of the key elements of the co-design approach: security and functional development follow

separate (but not independent) tracks with strong mutual influence. The goal of this form

of separation is to allow talent to be focused where it is mosteffective, while ensuring that

security concerns are properly accounted for in the functional development and vice versa.

For any integrated approach to the development of secure systems to be successful, it must

include significant tool support to make its application feasible. If, instead, the approach

were simply to mandate the use of additional techniques and methodologies that must be

applied manually, then the cost of development would becomeprohibitive, the effort would

be scaled back, or important elements of the approach would be omitted. For example,

consider the canonical approach for the procurement of high-assurance systems, governed

for many years by the DoD’s so-called Orange Book [dod85] (orthe corresponding Euro-

pean requirements), and more recently by the Common Criteria. Depending on the level

of security required, systems developed to these standardsmust be subjected to rigorous

4

development processes, analysis, testing, and evaluationby an accepted certification au-

thority. While the resulting system is almost certainly more secure (by some measure) than

one developedad hoc, the specialized skills, expertise, and training requiredto carry out

the development and certification make the cost of such systems prohibitive to all but the

most security conscious environments, such as military andintelligence organizations.

In contrast, our co-design vision is intended to expand the scope and availability of informa-

tion assurance techniques by laying the groundwork for tools to assist in the development

process and by allowing developers to adapt their use of the tools to the desired level of

system security. The idea is toaugment, rather than replace, the engineering processes

already being used by system developers. We argue that security co-design will be most

successful and incur the least overhead when the members of the team are able to carry on

with their work with minimal interference and without significantly onerous additional or

new procedures. This is not to say that the benefits of security co-design are without cost.

The envisioned interaction between the security and functional development teams does in-

cur overhead; clearly, any additional work implies additional cost. (Of course, substantial

savings can also result from earlier detection of security flaws.) The goal is to keep the

additional net cost reasonable relative to the desired level of assurance.

2.1 Rationale

The Cyberscience project has pursued specific elements under the same broad theme estab-

lished in decades of computer security research [Lev95, Neu95, Olt01]: security must be

an integral part of systems development if it is to be successful. At the same time, we rec-

ognize that the skills and expertise required for effectivesecurity work are in many ways

different from those required for effective systems work (from a functional standpoint).

These differences in required skills and expertise undoubtedly arise in part from a funda-

5

mental distinction between the character of functionalityand that of security: functionality

is concerned with what a systemmustdo, while security is concerned with what a system

must notdo. To take an oversimplified view, we might say that a systemsengineer, who

is charged with the task of building a system that meets certain functional requirements,

is most concerned with finding ways to construct a system thatdoes all the things it needs

to do; the resulting system may in fact do more. A security expert, on the other hand, is

most concerned with ensuring that the system does not do, directly or indirectly, anything

it should not do. To the security expert, anything the systemdoes beyond its functional

requirements could be another potential avenue for security breaches. In short, the skills

and expertise of a systems engineer are geared more toward making things work, while

those of the security expert are geared toward keeping things protected.

This is not to argue that there is no overlapping of concerns between the functional and

security realms. If an effort to design and build a secure system is to succeed, clearly each

side must have substantial awareness and understanding of the other’s requirements. One

way to accomplish this would be to assemble a team whose members are well-versed in

both the functional and security aspects of systems development, but this is unrealistic,

since individuals with significant talent and training on both sides are rare, relative to the

pool of available talent for the two sides separately. Nor would it be realistic or cost-

effective to train the team in all the required areas of expertise. For these reasons, we

argue that a better approach is to consider the functional and security aspects of system

development as separate tracks, but with strong mutual influence. The notion of separation

is important, because it explicitly focuses the different required skill sets where they are

most useful. From the standpoint of strong mutual influence,there needs to be continual

communication between the two sides to ensure that the requirements of each are accounted

for by the other as the effort proceeds.

Influence from the security side to the functional side involves the security team informing

6

designers and implementors of the security requirements and helping them to make design

and implementation decisions that lead to the satisfactionof those requirements. During

the system development process, designers and implementors face many choices, such as

hardware platforms, use of off-the-shelf software, implementation languages, and algo-

rithms. The range of choices may of course be constrained by the functional requirements

themselves, as well as cost considerations, and the skills,experience, and preferences of

the development team, among other factors. Security requirements, too, can be viewed as

constraints on the design and implementation options available to the development team.

For example, a security requirement stating that the systemmust protect information from

unintended disclosure would most likely eliminate the use of cleartext communication over

public network links as an implementation option. A primaryresponsibility of the security

side of the co-design approach is to make sure that the security constraints are considered

when design and implementation decisions are made. This mayinclude the identification

of additional design and implementation alternatives thatmeet the security requirements.

Influence from the functional side to the security side involves the designers and imple-

mentors keeping the security team informed of functional requirements and design and

implementation choices, as this information drives the development of more specific secu-

rity requirements. For example, at the architectural level, it may be possible to satisfy

the functional requirements of a particular information system either through a central

mainframe with directly connected terminals or through a distributed system involving

networked workstations. From the security team’s point of view, it may very well be pos-

sible to adopt either architecture in building a system thatsatisfies the top-level security

requirements. However, at a more detailed level, the security constraints entailed by a

mainframe-based system will most likely be quite differentfrom those of a distributed sys-

tem. Is ittherefore critical for the security team to know what design and implementation

alternatives are being considered so that they can make progress on elaborating the security

7

requirements, which, in turn, feed back into the functionaltrack.

2.2 A Framework for Security Co-design

Based on the particular needs of secure systems developmentoutlined earlier and the co-

design philosophy just described, we have developed a framework and methodology for se-

curity co-design that addresses all the major needs in an integrated way. This framework is

strongly influenced by existing approaches to systems engineering, in particular, our work

on dependable software architectures [GRS99, HDRS99, MXR95, MQRG97, Rie99] and

design of safety-critical systems [Lev95, Neu95]. A major motivating goal of the frame-

work is that it bepracticaland have asound mathematical basis. On the practical side, the

methodology aims to augment, rather than replace, existingdevelopmental practices. As

suggested by the earlier discussion of our co-design philosophy, we believe that the max-

imum benefit to secure systems development will be obtained by allowing team members

to apply their existing skills and expertise appropriately, rather than insisting that members

be retrained or otherwise forced to adopt fundamentally newprocedures. At the same time,

the emphasis on mutual influence between the security and functional development tracks

should naturally lead to enhancement of the skills and knowledge of both sides. From the

standpoint of providing a sound mathematical basis for secure systems development, the

methodology incorporates accepted and well-understood formal approaches to security and

system modeling.

Figure 1 illustrates the security co-design methodology ata high level. Our approach can

be characterized generally (and somewhat ideally) as a top-down development process,

although it explicitly allows feedback to, and revisiting of, earlier developmental stages.

The process starts with a statement of top-level mission objectives, which may or may not

even refer to a computer or information systemper se, but which should capture what is

8

...
...

Mission Goals

Security
elaboration

Functionality
elaboration

Adversaries,
Threats

Attacks

Vulnerabilities

Operational
requirements

Functional
description

Mechanisms

Figure 1: Security co-design method

to be achieved, by whom, and in what environment. That is, themission objectives should

include not only top-level functional requirements, but also assumptions about the target

user community, the intended operational environment, andcost constraints. The mission

objectives will also include a statement of top-level security requirements, which will gen-

erally address (at least) the following major categories ofsecurity issues: confidentiality,

integrity, and availability.� The process starts from top-level mission goals, environmental assumptions, cost

constraints.� Iterative elaboration is performed at successively more concrete levels of abstraction.� Security requirements constrain design/implementation options.� Different options must be evaluated with respect to security and functional require-

ments, exposing tradeoffs and forcing conscious, documented, and justifiable choices

throughout the development.

9

� Security and functional elaboration steps are (or can be) interleaved; there is no re-

quirement that there be one security elaboration step for every functional elaboration

step (or vice versa).

By following the elaboration/evaluation process, all the desired products (or at least all the

raw material for all the desired products) are generated: requirements, architecture, design,

implementation, and evidence for the IAC. That is, everything is recorded as the process

proceeds. We do not necessarily insist that all the documents be generated and kept up to

date during the process, but a co-design “record” should be maintained with all the required

information.

Main Elements of the Framework The basic approach to security co-design is intended

to provide answers to two questions:

1. How should security requirements by expressed?

2. How should an information assurance case be constructed?

Our goal in answering these questions is to provide a more scientific foundation for secu-

rity engineering. Thus, we have sought to answer the first question by providing a formal

language for expressing and reasoning about security requirements, and we have sought to

answer the second by providing a formal, yet easily understandable, notation for express-

ing the argument that security requirements are satisfied. The security co-design method

provides the system engineering framework in which these notations can be effectively

employed.

The general approach of separate-but-coordinated elaboration of functional and security as-

pects follows directly from adequacy criteria for answers to the two questions. In particular,

we believe that we should not require extensive changes in existing system development

10

methods. Experienced developers of secure systems are rightly wary of any proposed rad-

ical changes in development methods that have been proven inpractice to “work”, in the

sense that the resulting systems may not fully meet all requirements, but do prove to be

reasonably secure in practice. This constraint suggests that the formal analysis of secu-

rity concerns can best be integrated into existing development practice by having a team

of security analysts provide proactive and reactive adviceto the developers as develop-

ment proceeds. This, in turn, suggests that a complete design record be captured during

development, so that security analysts will have all the information they need to do their

jobs without having to require the functional developers tosupply the information to them.

Of course, the idea of maintaining a complete development record has other advantages,

and has frequently been proposed in the past as a solution to various software engineering

problems, but the benefit of having the record seems especially compelling when an IAC

must be constructed, because just about any design decisionmay have a serious impact on

security.

Security Requirements Elaboration One of the most difficult issues in attempting to

develop a widely useful approach to dealing with security requirements in system devel-

opment is the lack of consensus on just what security requirementsare. Even the basic

concepts employed in security requirements statements vary considerably. Security re-

quirements can be expressed in terms of� potential system vulnerabilities that must be avoided,� attacks, or general attack strategies, that must not succeed,� system threads, or use cases, that must never occur,� capabilities of adversaries that must be insufficient to allow them to interfere with

system operation,

11

or in any of a host of different ways. While there are logical relations among these con-

cepts — for example, attacks exploit vulnerabilities, so eliminating a certain vulnerability

guarantees that attacks essentially relying on exploitation of that vulnerability will fail —

emphasis on any one to the exclusion of the others entails commitment to single security

perspective, which may not be appropriate in all circumstances. This lack of consensus is

one reason why there is no standard methodology for securityrequirements analysis, and

helps explain why security requirements are often left implicit, or are only partially and

informally captured. In fact, requirements that certain mechanisms intended to provide se-

curity — passwords, encryption, firewalls, and so forth — be used often substitute for true

security requirements, although this leaves the question of what security properties these

mechanisms are intended to provide unanswered and, hence, makes evaluation of whether

use of the mechanisms has the intended effect impossible. Some approaches to security

even entirely eschew the notion of requirements, opting instead for requiring the use of

system development methods that tend to result in more secure systems but that do not

guarantee any particular system security properties.

We believe that all these different concepts have a role to play in capturing security require-

ments. The different concepts correspond to different levels of abstraction in the system’s

functional design. They play roughly the same role thatstyles[Gar96] play in functional

description. For example, it makes sense to talk about system attack scripts at the functional

level where the external interface to the system has been defined, but talk of a potential vul-

nerability in a particular component — say, an overflow of some buffer — makes sense

only at a lower level where the system component has been introduced in the design. That

the attack must fail is a constraint on the lower-level design; that vulnerabilities such as

undetected buffer overflow must be avoided is an elaborationof the attack constraint, one

way of making sure it is satisfied. Whatever mechanism is introduced to ensure that buffer

overflow cannot occur also guarantees that the attack will fail.

12

A major goal of the Cyberscience project is to put the processof developing system security

requirements on a more scientific footing.� The process must provide effective guidance to the requirements developer, and

whether a particular set of security requirements was developed in accordance with

the process must be determinable by independent reviewers,just as in the case of the

current method-oriented approach.� The result of the process, the requirements statement, mustprovide effective guid-

ance to the system developers.� There must be a scientific justification that the process results in the right security re-

quirements, i.e., all the requirements that must be satisfied if the system is to perform

its mission.

Information Assurance (IA) Case Construction Since complete statements of security

requirements, even in informal terms, are rare, complete arguments that a system satisfies

its security requirements are rare as well. Often, a considerable body of evidence that a

system has desirable security properties is collected — ranging from formal verifications

of protocols employed to red team failures to breach — but theevidence is left to speak for

itself, rather than used as premises in an argument that the system is sufficiently secure to

perform its mission. As a result, the strength of the evidence is hard to assess, and omission

of evidence required to assure high confidence in the system’s security is easily overlooked.

Thus, there is a sharp contrast between security cases for systems with stringent security

requirements and safety cases for systems with stringent safety requirements. Safety cases

specify exactly what evidence is relevant, what safety hypotheses are influenced by that

evidence, and how strongly the evidence influences the safety hypotheses. The other main

goal of our effort is to show how to bring a level of rigor to construction of an IAC that

13

is comparable to the level of rigor commonly seen in safety cases. This will place IAC on

a more scientific basis, allowing for review and refinement ofthe case when more infor-

mation is obtained, when the system or its security requirements change, and so on. Thus,

much higher levels of confidence that security requirementsare satisfied can be obtained.

14

3 Information Assurance Cases

In current practice, many different approaches are employed in the attempt to achieve an

adequate level of security.� There is intensive analysis of the system design, where analysis techniques range

from informal inspection of system design documents to formal analysis of mathe-

matical models of the system.� Standard technology — such as firewalls, encryption, and intrusion detection — that

provides security-related functionality is incorporatedin the design.� Best state-of-practice software engineering techniques —such as extensive testing

— are employed in development.� Systems are continually patched to eliminate flaws that are discovered as a result of

attacks by red teams and, after deployment, by actual opponents.

This list could be lengthened indefinitely, but two main points are already evident. First,

there is typically a great deal of evidence collected to support a claim that a system is

adequately secure. Second, the evidence is as disparate as it is voluminous.

Given all the effort devoted to ensuring security, how is it that systems so often fail to meet

their security goals? We believe that one factor is the gap between what is directly estab-

lished by all the evidence that the system is secure and security objectives. For example, if

we have evidence that a standard encryption algorithm was used to protect the information

in a certain file, and we also have evidence that the encryption algorithm was correctly im-

plemented, then we have good evidence that the information in the file cannot be accessed

without the decryption key. However, we are still far from having established the confi-

dentiality of the information in the file. Even leaving asidethe obvious possibility of an

15

attacker obtaining a key, there are many other ways the information might be obtained, for

example, insertion of a “trojan horse” that supplies the information to an attacker prior to

encryption or after decryption into the storage managementsystem.

These considerations suggest that establishing a desired high-level security property from

the available evidence is bound to require a complex argument. Such arguments are, at best,

incompletely recorded during the design process. For example, the design record might

include a comment that a certain security feature was included in order to thwart a certain

class of attacks, or that an analysis of the code shows that a certain class of attacks will fail.

However, such arguments are generally incomplete: they rest on assumptions that have not

been made explicit, and it is often questionable whether thecited evidence actually provides

adequate support for the conclusion. Moreover, the conclusions purportedly established are

typically much lower-level than the real security objectives, which have to do with system

availability and integrity, information confidentiality,and other high-level properties, rather

than failure of some class of attacks.

Ultimately, determination of whether the high-level security objectives have been satisfied

is left to the judgment of experts. Typically, the reasoningprocess these experts employ to

arrive at their evaluations is entirely ephemeral, which has a number of disadvantages.� The reasoning isnon-reviewable. No one else can check the reasoning for gaps or

errors.� The reasoning process isnon-repeatable. Even if another expert reaches the same

conclusion, there is no way of determining whether or not he reached it by the same

route. Thus the reasoning process itself can be validated only indirectly.� As a result, the reasoning process isnon-improvable. There is no way to determine

whether a given pattern of reasoning can be relied upon generally to provide correct

results, since the details of the expert’s reasoning are unknown.

16

� And, most important, the reasoning isnon-maintainable. Systems evolve after de-

ployment, and there is no way of determining whether or how any given change to

the system should influence the belief that it is adequately secure.

At best, experts’ assessment processes are codified in standards that offer recipes for secure

system development. There is no question that this offers certain advantages. For exam-

ple, if systems that satisfy a standard frequently prove inadequately secure, an attempt can

be made to improve the standard. However, because the argument that satisfaction of the

standard can be expected to guarantee adequate security hasnot been made explicit, deter-

mining what has gone wrong can be problematic. This may be oneof the reasons why the

standards-based approach has not been very successful in yielding high levels of security.

Another reason may be that the variation in systems and security needs is too great for a

simple cookbook-style approach to satisfactorily address.

It should also be noted that independent assessment of a system’s security is an expensive

business. Detailed knowledge of the system, its security requirements, and all the evidence

relevant to determining whether those requirements have been satisfied is needed. Only

members of the development team have this knowledge, but they are hardly likely to find

any security holes that they have allowed to slip through during design and development.

If an independent assessment is to be based on more than a rather shallow understanding of

the system and the security needs, the assessor must spend weeks — more likely, months

— “getting up to speed”, that is, learning everything about the system that is relevant to the

assessment. This impact on cost and schedule is usually unacceptable. Hence, independent

assessment, including any assessment performed as part of aformal system certification

process, is generally based on a relatively shallow understanding of the system.

We hypothesize that a solution to these problems is to make the argument that the system

satisfies its security objectives explicit and complete. One reason for thinking so is an

17

analogy that can be drawn between safety and security. Systems with stringent safety re-

quirements must be certified safe prior to deployment. The certification process essentially

amounts to review of asafety case, an explicit argument by the system’s developers that

the safety requirements have been satisfied. Only if the argument is found to be convincing

is the system is certified. The argument can be checked for gaps and errors. If gaps are

discovered, they can be filled. If errors are discovered, they can be fixed. If a form of

reasoning employed on the argument does not reliably lead tocorrect results, conclusions

established via its use can be discounted by the certifiers. If changes are made to the sys-

tem, their impact on the safety case can be evaluated. Collecting all the relevant evidence

and making its relevance explicit makes it relatively easy for system certifiers to “get up to

speed”.

We have tested this hypothesis by constructing partialinformation assurance cases(IACs)

for two prototype systems having stringent information assurance requirements.

3.1 Safety Cases

In the safety world, the provision of a safety case for each procured critical system is the

norm and is frequently mandated by certification authorities. Safety cases are required for

military systems, the offshore oil industry, rail transportation, and the nuclear industry.

A safety case is an explicit argument that a system satisfies relevant safety requirements.

Typical safety requirements state that the probability of certain system failure modes or

certain effects of system failure (e.g., loss of human life due to system failure) must be

less than some small parameter. For some systems and parameter values, the expected

number of failures that will be observed during the lifetimeof the system is large enough

that system failure statistics will reveal whether safety requirements have been satisfied; in

other cases, failure will be so infrequent that whether requirements have been satisfied will

18

always remain a matter of conjecture.

Prior to fielding the system, it is generally impossible toensurethat safety requirements

have been satisfied. But it is possible to develop arguments that support reasonably high

confidence that safety requirements have been satisfied, andthat is the objective in safety

case creation.

The safety case can be broken down into three parts.� First, there is a collection of relevantevidence. The evidence consists of all the facts

relevant to the safety assessment. This can range from relatively hard data, such as

system test results, to quite soft data, such as adherence tocertain system engineering

practices during development. In particular, both the results of system analyses —

e.g., computations of failure rates based on statistical simulation — and any evidence

supporting the assumptions upon which system analyses are based are included.� Second, there is a collection ofsafety requirements. These include not only the safety

requirements given as part of the system specification, but also any derived safety re-

quirements extracted from the given requirements during the analysis process. For

example, any categorization of system failure modes introduces additional, more spe-

cific, safety requirements. Also, all the assumptions made during safety requirements

and system analysis are included among the requirements, since evidence must be

provided to show that these assumptions are satisfied.� Finally, there is a collection ofargumentsthat provide the grounds for believing

that the safety requirements are supported given the evidence. These arguments can

be specific to the particular evidence, more general (i.e., have the formgenerally,

evidence of this sort indicates that a goal of this sort is satisfied). Arguments may or

may not explicitly indicate the strength of support provided by evidence, and may or

19

may not determine the net strength of support given the entire body of evidence.2

A good introduction to the best current state-of-practice in safety case development can

be obtained by examining the strengths and weaknesses of oneof the premier commercial

tools for safety case definition, the Adelard Safety Case Editor (ASCE).3 ASCE represents

the safety case as a directed multigraph, with three node types and three link types. The

three node types —evidence, claims, andarguments— correspond quite directly to the

three parts of the safety case identified above. The first linktype,is evidence for, indicates

that some evidence node provides evidence for some argumentnode, claim node, or other

evidence node. (The latter two cases are probably best thought of as resulting from the

elision of a trivial argument node.) The second link type,supports, links argument nodes

to claim nodes that it supports. Thesesupportslinks come in various strengths, indicating

whether the argument provides weak, strong, or some intermediate degree of support for

the claim. The third link type,is a subclaim of, is used to indicate decomposition of a claim

node into subclaim nodes. Likesupportslinks, is a subclaim oflinks come in various

strengths, to indicate the importance of truth of the subclaim to truth of the claim.

ASCE’s main selling point is that it makes the structure of aninformal safety case explicit,

and does so in a somewhat more useful way than the tables of claims and their support

representative of typical industrial practice. For example, by associating strengths withis

a subclaim oflinks andsupportslinks, the ASCE representation suggests where strength-

ening arguments will have the greatest impact on the overallstrength of the safety case:

strengthening weak support links to important subclaims. The arguments themselves re-

main informal, which has some substantial practical advantages. First, providing wildly

2Unfortunately, this terminology has not been standardized. For example, in the Safety Argument Man-

ager (SAM), a computer-based tool for constructing safety cases, the analogues of claims are called “goals”

and the analogues of arguments are called “warrants”. However, the concepts are essentially the same.

3A trial copy can be downloaded from the Adelard Web site,www.adelard.com .

20

disparate sorts of evidence for an argument is not a problem;there is no issue of how some

piece of evidence can be represented in a particular reasoning framework. Second, no par-

ticular technical skill is required to understand the safety case for a system, just enough

familiarity with the domain and the system to allow the descriptions of the evidence, argu-

ment, and claims to be understood.

However, informal arguments have some inherent shortcomings as well. The most im-

portant of these is the absence of a normative standard that determines whether, given the

evidence, the arguments do in fact strongly support the safety claims. In technical terms,

one would say that there is no criterion for determining whether the argument isinductively

strong4 — or, if the conclusions have been appropriately qualified and the correctness of the

relevant principles of non-demonstrative inference has been included among the assump-

tions of the argument,deductively valid. Thus, substantial domain expertise is required

to determine whether the evidence really provides adequatesupport for the safety claims.

Providing explicit arguments certainly makes this decision easier; however, there is still a

possibility that experts will disagree in their assessments of the strength of a safety case.

When disagreements occur, the absence of an objective standard that determines who is

correct means that the disagreement amounts to a differenceof opinion and there is no

mechanism to help achieve convergence.

Thus, one substantial research focus has been the formalization of safety cases. The

best known work in this area is the attempt to represent safety cases using Bayesian net-

works [DMS95, LW97]. Roughly, the idea is to replace an informal argument that connects

evidenceE to safety claimH by P (E jH) andP (E j �H), the probability of observingE given thatH is true and the probability of observingE given thatH is false. Similarly,

4This terminology is a bit unfortunate, since it suggests that induction is the only relevant principle of

non-demonstrative inference. (When the expression gainedcurrency, this was generally thought to be the

case.)

21

an informal argument that subclaimH 0 supports claimH is replaced byP (H 0 j H) andP (H 0 j �H). These conditional probabilities, together with the conditional independence

assumptions implicit in the structure of the network, determine a probability distribution.

In particular, the probability of each safety claimH in the system requirements given the

totality of evidenceE , P H j Ê2E E! ;
can be calculated via repeated application of Bayes’s Theorem.

The principal advantage of this formalization is that it solves the problem of evaluating the

inductive strength of the safety case: given the evidence and the probability distribution,

the probabilities of the safety claims are uniquely determined. If the case for some safety

claim is strong, according to this criterion, but seems weakto some expert assessor, then

either

(1) the assessor must disagree with some specific estimate ofa conditional probability

or some specific independence assumption,

(2) the expert’s assessment is based on evidence not explicit in the safety case, or

(3) his assessment is based upon flawed reasoning.

If the assessor can defend his own differing estimate of conditional probabilities and con-

ditional independencies, or can present additional evidence, the accuracy safety case can

be improved. And so there is a method for focusing on specificsin a disagreement among

experts that improves the chances of achieving consensus.

But the advantages of formalization are not unalloyed. Experience shows that experts find

it difficult to estimate the relevant conditional probabilities, and have little faith that their

estimates are accurate to even one significant figure. The Bayesian calculations thus pro-

duce results much less reliable than the use of precise numeric probabilities suggests. For

22

example, one would naturally be inclined to prefer a system design supported by a safety

case where all required safety properties have a probability of 0.97 or greater to a competing

design supported by a safety case where some required safetyproperties have a probability

of only 0.9. However, given the unreliability of typical conditional probability estimates,

the difference between a computed probability of 0.9 and 0.97 is not significant, that is, the

difference provides no basis for preferring what appears, prima facie, to be the safer design.

Our belief is that, in practice, an intermediate degree of formalization is preferable to either

extreme. Replacing conditional probabilities with a smallfinite range of values — perhaps

a scale of 1 to 5, with 1 representingvery unlikely, 2 representingsomewhat unlikely, 3

representingas likely as not, 4 representingsomewhat likely, and 5 representingvery likely

— greatly simplifies the problem of obtaining parameter value estimates from an expert.

Similarly, Bayesian updating can be replaced by having the expert provide a function for

computing a likelihood value for a claim from the likelihoodvalues of its supporting ev-

idence or subclaims. In practice, experts seem to find very simple functions sufficient,

often just minimum, maximum, and average. Given the analogybetween safety cases and

IA cases, which the following discussion addresses in more detail, we also believe that an

intermediate degree of formalization is most appropriate for IA cases as well.

3.2 SEAS as an IAC tool

The analogy between safety cases and IACs is based on the notion that IACs should play

the same role in security assessment that safety cases do in safety assessment. Given the

intended similarity in function, considerable similarityin structure is natural. Thus, we

assume that an IAC consists of evidence, IA claims — some of which are given as IA

requirements, and some of which are derived by analysis —, and explicit arguments linking

23

evidence to claims.5 Given the experience of the safety community, we decided that a

graph-based approach is clearly preferable to a linear text-based approach. As mentioned

in the previous section, we think a level of formality greater than the informal hypertext of

ASCE, but less than the probability distributions characterized by Bayesian nets, is the best

compromise between practicality and the attractions of theory.

As a starting point for our IA case development approach, we chose the Structured Evi-

dential Argumentation System (SEAS), developed by the Artificial Intelligence Center at

SRI.6 SEAS was originally developed to aid intelligence analystsin assessing evidence that

either supports or refutes hypotheses, with the overall goal of anticipating potential crises

around the world. The system was motivated in part by the observation that, while formal

methods are difficult to apply to problems of intelligence analysis, decision makers could

benefit from an intuitive, easy-to-use system that providesstructure, rigor, and automa-

tion. Thus, although SEAS was not designed with our application in mind, it nevertheless

shares our goal of combining broad usability with scientificrigor. More important, SEAS

incorporates several specific features that make it a good match to our needs:

5Attempts to exploit an analogy between safety and security have often been criticized on the grounds

that safety is inherently probabilistic — one never claims that failure is impossible, merely very infrequent

— where security is not. However, two responses are possible. First, while high-level security claims may

not be probabilistic, IACs are not intended to establish that the claims aredefinitelytrue, merely that they are

probablytrue, where “probable” is being used in the subjectivists’ (a.k.a. Bayesian) sense rather than the fre-

quentists’ sense. Second, since we know, based on experience, that all complex systems fail to provide perfect

confidentiality, integrity, and so on, it arguably makes good sense to replace these absolute concepts by more

probabilistic notions. For example, given that no real system can guarantee integrity in all circumstances, a

more reasonable requirement is that failure of integrity ismerely very infrequent. In fact, Littlewood [LW97]

has proposedexpected effort to breach, an explicitly probabilistic notion, as a practical replacement for a

range of traditional security properties.

6For more information about SEAS, seehttp://www.ai.sri.com/˜seas .

24

� It is graph based.� It fully formalizes non-demonstrative arguments; that is,conclusions have strengths

based on strengths of hypotheses and strengths of influence.� It replaces probabilities by small ranges of discrete values that are meaningful to both

developers and consumers.� It replaces conditional probabilities and Bayesian inference by simple user-selected

rules for strength propagation (e.g.,min, max, mean).

SEAS is built upon a foundation of mature, widely used software to support various aspects

of evidential reasoning developed over the past two decadesat the AI Center. For example,

both the Grasper and Gister systems are components of SEAS.7

SEAS is a Web-based system that supports the creation and exploitation of a “corporate

memory” organized around three main object types:argument templates, which are hi-

erarchically structured sets of interrelated questions;arguments, which are instantiations

of argument templates with answers to the questions relative to particular situations; and

situation descriptors, which characterize the situations to which the argument templates

apply. In the context of IA case development, argument templates are the generic struc-

tures of hypotheses pertaining to particular IA goals, arguments are instantiations of these

arguments with evidence, and situation descriptors characterize the part(s) of the system

to which the argument templates apply. In SEAS terminology,arguments are indexed by

situations, which in the IA context, means that arguments pertaining to particular parts of

the system can be readily identified and retrieved.

While developing the prototype IACs using SEAS, we investigated the utility of various

extensions to the system. One of our longer-term goals is to enable formal analyses of IACs,

7For more information on Grasper and Gister, seehttp://www.ai.sri.com/software_list .

25

for example, a formal analysis of the breadth of coverage of the IAC relative to the system

design, usage scenarios, and other relevant factors. Doingso, without compromising ease

of use, is by no means straightforward.

3.3 IAC Construction and Maintenance

The construction of an IAC is not an after-the-fact activity. To be as complete and convinc-

ing as possible, development of an IAC should be initiated atthe earliest phases of system

development and maintained throughout the system life cycle. It can be exceedingly diffi-

cult to recapture in the latter stages of a system engineering effort all the analysis, reason-

ing, and decision-making that went into the process, which in turn is likely to make IAC

construction after the fact more expensive and the resulting IAC less compelling.

The fact is that much of the evidence and argumentation needed for a convincing IAC

is generated, at least implicitly, during a typical system engineering effort. For example,

system architects make design decisions intended to satisfy the functional and security re-

quirements of the system, subject to cost and schedule constraints. Each such decision has

some justification, and this justification can become part ofan argument that a system that

faithfully implements the design will satisfy its requirements. Similarly, implementors se-

lect or produce hardware and software components intended to realize the design faithfully.

Here, too, the selections have some justification, while thecomponents have certain evalu-

able characteristics (e.g., by analysis, simulation, testing, and debugging) that can provide

evidence to support claims of correct implementation. Similar observations apply to system

deployment and maintenance activities.

One of the keys to developing convincing IACs is to make all the argumentation and ev-

idence explicit and to capture it completely during all phases of the system life cycle.

Indeed, this notion is one of the primary motivations for theuse of a kind of corporate

26

memory we call theco-design object baseas a fundamental part of our security co-design

methodology. Acknowledging the need to integrate securityinto the system development

process from the beginning, but recognizing that security and functionality are different

in character, the security co-design approach separates the development effort into secu-

rity and functional tracks that strongly influence each other. The co-design object base,

or COB, is a central component to support this methodology. The COB is essentially a

living history that records the evolution of a system’s development. It constitutes a central

store from which can be generated all the critical products of a secure-system development

effort, in particular, the IAC. In fact, IAC construction isthe driving application for COB

development. And, as with the IAC itself, we are using SEAS asthe starting point for COB

development, because of its existing support for maintenance of a corporate memory.

A better understanding of the contents of an IAC can be gainedby examining examples.

The design-stage IACs for two different systems are described in the next section.

27

4 Test Cases for the IAC Concept

The use of IACs cannot be explored in depth without focusing on concrete examples. To

better grasp the possible structure and composition of an IAC, we developed a design-

level IAC in outline form for a dependable intrusion-tolerant Web server (theDIT system)

developed under a separate project at the SRI System Design Laboratory (SDL) [VAC+01].

In addition, we have used SEAS to develop a design-level IAC for an intrusion-tolerant

version of a Joint Battle Infosphere system (IT-JBI) that isbeing developed under DARPA

sponsorship by a team (including SDL) led by BBN Technologies.

The choice of systems used to test the IAC concept and SEAS is not critical to our dis-

cussion, and we do not address in detail here the need for the DIT and IT-JBI systems nor

their use. However, the fact that the systems were under development at the time of IAC

construction was helpful, since, as mentioned above, some of the information designers use

to verify dependability of a system is often lost, unavailable, or out-of-date after the system

is complete. Also, because the goal of an intrusion-tolerant system is to obtain higher de-

pendability from lower-dependability components, the argument that the system meets its

requirements is particularly important and nontrivial.

4.1 An IAC for DIT

The goal of the DIT system is to provide, at reasonable cost, asystem for high-availability

distribution of Web content, by incorporating widely available, relatively low-assurance

COTS software into a high-assurance intrusion tolerant design. The emphasis is on avail-

ability and integrity, not confidentiality, of the service.

The system is based on the observation that widely availableCOTS Web server software

is feature-filled and complex, and tends to contain securityvulnerabilities. (Examples in-

28

clude the infamous Code Red virus, which attacked MicrosoftIIS under Windows, and the

recent “Slapper” Linux worm that exploits Apache/OpenSSL.) But since different Web

server programs and operating systems typically have different vulnerabilities, a system

with redundant diverse Web servers on diverse platforms maybe able to provide a greater

assurance of availability and integrity, provided we have reliable mechanisms to compare

and forward responses from the redundant servers to clients. The DIT system is a network

of redundant COTS servers and other machines that provide such mechanisms.

The architecture (Figure 2) contains aproxy to forward client requests to a collection of

diverseapplication serversrunning COTS software and a monitoring subsystem that helps

contain intrusions. The proxy is a hardened platform running a small amount of custom

code. The simplicity and customized nature of the software on the proxy makes the proxy

more amenable to hardening than the application servers, which are running more com-

plex, harder-to-verify COTS software. The proxy accepts client requests, forwards them to

a number of application servers, compares the content returned by the application servers,

and, assuming enough agree, sends the corroborated answer back to the client. The proxy

and application servers communicate over a private networkthat is monitored by an intru-

sion detection system (IDS). The IDS provides assurance that ill-behaving compromised

application servers will be detected and corrected (e.g., by rebooting from read-only me-

dia), so that compromises are likely to remain limited to a small number of application

servers. Anagreement policydetermines which and how many servers are queried by the

proxy for each client request, and how sufficient agreement is determined.

Since we are describing an IAC for a partially complete system, we will only sketch the

scope of the IAC and the material it will contain, and then describe some portions of the

case in more depth.

At the highest level, the design-level IAC is an aggregationof several types of evidence and

arguments, including

29

AS1 AS2 AS3 AS4AS1 AS2 AS3 AS4

IDS

Clients

COTS
application servers

Proxy

Figure 2: Architecture of the DIT system.� a design assurance argumentthat the system is correctly designed, i.e., that the sys-

tem will meet its requirements making certain assumptions about behavior of off-

the-shelf components, and� component reliabilityassessments for off-the-shelf components that are included in

the system.

The design assurance argument also contains assessments ofthe tools used to build the

system. The main types of components in DIT are COTS Web server software, operating

systems, computer hardware, and network hardware. For eachcomponent, we collect evi-

dence that it will behave as needed in the design, relying on component specifications, past

performance of the component, and reliability of the component provider.

The design argument makes assumptions about components andinteractions of compo-

nents that are verified in the component assessment and testing portions of the IAC. But

testing also provides some redundant evidence, duplicatedby the design argument, that the

system will operate properly. Note that at this level — as at lower levels — assertions can

be combined in more than one way. They can combine in a deductive fashion, in which

new assertions are inferred from old ones, or in an aggregative way, in which similar, inde-

30

pendently derived assertions join to give greater assurance.

Since evidence for the latter two portions of the IAC is incomplete, we now focus on the

first portion, the design assurance argument.

A design assurance argument is an assembly of evidence, design details, and reasoning

that makes a convincing case that the design of the system, from abstract architecture to

the most concrete details of implementation and operation,meets appropriate operational

and security requirements. It is important that the argument include descriptions that are

as concrete as possible, since the point is to argue that the system itself runs according to

its higher-level requirements. For instance, formal verification focuses on the relationship

between two descriptions, such as between a specification and a piece of code. An argument

would include this verification, but should also give some reason, not necessarily formal,

that the system actually executes the code that was verified —and not, for instance, Trojan

code.

The argument can be viewed as an explicit representation of the type of argument designers

implicitly create when developing a system: it is a structured assembly of all the design

decisions, reasoning, and factual information that would be used to explain each phase of

system design. Typically, at any given point, a developer focuses on part of the system,

at a certain level of abstraction. Properly expressed, the requirements, design choices,

reasoning, and assumptions being made at that moment can be used as a “design element”

that forms a part of the assurance argument.

The approach we use to capture the assurance argument for theDIT system is to assemble

many such design elements, linking them together by checking assumptions and require-

ments (Figure 3). At the top, we have the requirements for thedesign: high-availability

Web service at reasonable cost with a certain throughput capability. The design element

below it describes the topology and basic function of the system: one proxy that commu-

31

nicates with the client and forwards requests and responsesbetween the client and each of

multiple COTS application servers. From this design, it is clear that in order to meet the

requirement that expected attacks be tolerated, we must make a number of assumptions,

including� A majority of the application servers are functioning properly at any one time.� The proxy implements an agreement policy that serves correct (majority) content.� With high assurance, the proxy is not compromised by attacks.

Design at more concrete levels naturally focuses on the three basic parts of the architecture:

the proxy, the application servers, and the network components connecting them.8 Design

elements for each of these parts detail the more concrete internal design of the components

and how it meets the architecture assumptions.

We also look more concretely at how the components fit together. For example, we specify

the exact protocols used between proxy and application servers (HTTP over TCP/IP on

Ethernet). We also argue that the concrete interoperation follows the assumptions of the

more abstract architecture design. For instance, once we know that the application servers

are computers running COTS operating systems and software,and that they are connected

by Ethernet, we realize the possibility of a single compromised application server attacking

and compromising additional application servers. We arguethat this is unlikely, provided

we assume that traffic between application servers is restricted and that compromised appli-

cation servers will be detected and rebooted. We progress tothe monitoring mechanisms,

including the intrusion detection system [PN97, NP99], to verify these assumptions.

8In this case, each design element seems to focus on a physicalentity, but this is not the case in general.

The elements simply reflect natural or convenient points of view for the designers.

32

Design
requirements

System
architecture

Proxy
Application

servers
Communication

components

Concrete
interoperation

Agreement
policy

Proxy
implementation

Proxy
software

Proxy
OS

Online
verification

Coding/compilation
methods

Application
software

App. software
configuration

Application
OS

App. OS
configuration

IDSNetwork

Network
hardware

Figure 3: Structure of the design assurance argument for theDIT system.

4.2 An IAC for an Intrusion-Tolerant JBI

In the OASIS Dem/Val program sponsored by DARPA IPTO, an architecture for a highly

survivable exemplar Joint Battlespace Infosphere (JBI) has been designed and is now be-

ing implemented as a prototype system for demonstration andevaluation. This particular

intrusion-tolerant JBI (IT-JBI) is currently referred to by the name DPASA,9 after the BBN-

led project that designed it.

The DPASA design combines state-of-the-art COTS technologies, such as managed switches,

modern databases and programming platforms; DARPA-developed survivability technolo-

gies, such as distributed firewalls, autonomic response mechanisms, distributed middle-

ware, intrusion detection and alert correlation, Byzantine tolerant protocols, and crypto-

graphic techniques; and design principles, such as containment of attack effects, isolation

of compromised parts of the system, and the application of redundancy, diversity, and dy-

9DPASA stands for Designing Protection and Adaptation into aSurvivability Architecture.

33

namic adaptivity. Individually, each of these is an incremental improvement. Working

together and augmenting one another, they represent a significant and serious effort to ad-

vance the state of the art in the development of survivable systems.

A JBI consists of clients interacting via mechanisms of publish, subscribe, and query

(PSQ), with this interaction mediated and supported by a JBIplatform providing middle-

ware services. A JBI client is a mission application that is enabled to use the JBI platform

through the CAPI (Common Application Programming Interface) for its PSQ interaction

with other clients. In a typical implementation, a portion of the platform is integrated with

the JBI clients while the rest of the platform, the core, exists on its own, independent of

any client, and implements the publish, subscribe, and query operations as services to the

clients. It is possible to view the survivability architecture for a JBI as a specific instance

of the more general framework for designing survivable distributed systems.

In the DPASA context, the JBI core is viewed as being controlled more extensively than the

JBI clients, and the design reflects that in the form of a highly available and well-protected

core. A distributed middleware layer manages the interaction between the clients and the

core. The clients, which are more numerous, also employ hardening, redundancy, and

adaptation measures, but they are tightly monitored by the more trusted core. The whole

system is instrumented with intrusion detection sensors, with a sophisticated correlation

mechanism as part of the core.

4.2.1 A Defense-Enabled JBI

A detailed description of the DPASA IT-JBI is beyond the scope of this report, since

DPASA is not directly connected to the Cyberscience research, except as it serves as a

test case for IAC development. Nevertheless, some familiarity with the DPASA design is

necessary to understand the design-level IAC we have developed. Here we present a brief

34

overview of the DPASA design. For more details, the reader isreferred to the DPASA

Phase I Design and Validation reports [Pal03, San03].

One of the main JBI objectives is to facilitate easier, quicker, and on-demand integration

of disparate applications in support of a mission. The JBI aims to achieve this objective by

treating a mission operation as loosely coupled interactions between information producers

and information consumers. This publish-subscribe interaction between the information

producers and subscribers, collectively called the JBI clients, is further augmented with

a query capability where consumers can query for information pertaining to some topic

or request a specific information product. The event channelabstraction underneath the

publish-subscribe paradigm, as well as the information object (IO) repository required to

support the query, implies a logical hub-and-spoke architecture for the JBI. The JBI vision

further strengthens this logical hub-and-spoke view by including the notion of a JBI plat-

form that hosts the services to be used by the JBI clients and also services for managing a

JBI. Figure 4 depicts the high-level structure of a notionalJBI.

The DPASA view of the JBI platform consists of thin client-resident parts with the bulk of

the platform services implemented in a core. In addition to the existing platform services in

the baseline (the JBI exemplar developed by AFRL), the defense-enabled JBI has services

that lie in the core, such as management of the various survivability mechanisms introduced

by the survivability architecture. These services are organized as layered zones, with the

idea that most critical services are protected by multiple perimeter boundaries, as depicted

in Figure 5.

Zones create concentric barriers between clients and critical core services. The design

objective is to force an attacker to compromise a host in eachzone, without being detected,

in order to mount an attack across zones. To prevent flow-through attacks that could leap

across zones, client-to-core transactions that cross zones are proxied at the communications

level, the middleware level, and in most cases at the applications level. Thus, an attacker

35

Figure 4: Structure of a notional JBI.

who succeeds in compromising a client would then have to compromise one of the core

access proxies (in the crumple zone), and then compromise a host in the operations zone,

in order to mount an attack on a system manager, all while remaining undetected.

A network protection domain, provided by enhanced, encryption-enabled network interface

cards (called ADF NICs) whose behavior is governed by special network policy servers,

severely limits the ability of an attacker to mount integrity or confidentiality attacks against

the system from the wide-area network (WAN). Plausible attacks from outside the system

would have to originate over back-end connections to clients, thus forcing the attacker

through multiple zones in order to compromise the innermostcore. Figure 5 shows the

details of the physical architecture within what is called acorequadrantor channel.

The zones are populated as follows:

36

� The client zone contains all the various client hosts. Thesehosts cannot communicate

directly with each other in normal operation.� The crumple zone contains the core access proxies. These proxies constitute the first

line of defense between the core and clients.� The operations zone provides the JBI publish, subscribe, and query functionality

as well as various information assurance functions, including the policy servers to

manage the ADF NICs, alert correlation, and intrusion/fault detection mechanisms,

such as the Guardians and the network intrusion detection system (NIDS).� The executive zone contains the system manager that has the job of coordinating the

operations of the other JBI components, managing the overall status of JBI clients,

and providing the primary interface for the JBI managers (the JBI CIO’s staff).

The hosts in a core channel communicate with each other over amanaged switch. The

switch has a hardware port-blocking capability that controls the ability of hosts to commu-

nicate directly with one another. This provides for enforcement of the zone structure (note,

in particular, that the access proxy cannot directly talk tothe system manager) and limits

the effects of flooding attempts within, and among, core quadrants.

The core is composed of redundant channels that provide intrusion/failure detection capa-

bility and reserve resources that are used if the capabilities of one or more of the channels

are compromised. The level of redundancy is a trade-off between cost/manageability and

robustness of operation/intrusion detection. The DPASA design utilizes four core channels

(quadrants) to provide Byzantine tolerance for intrusionsthat may reach the executive zone.

Clients communicate over a network with the DPASA core via one or more of the core

access proxies, depending on the particular protocol beingused. In the event that mul-

tiple compromises render quadrants temporarily inoperable or inaccessible, the protocols

37

will adapt to the number of available quadrants. The redundant core quadrants employ

diversity across the crumple zone to make it unlikely that they would all be compromised

simultaneously by exploitation of a single vulnerability.

Cross-quadrant communications are strictly limited and exist to support three specific ca-

pabilities: 1) Robust PSQ protocols that guarantee that IOswill be properly handled by

the core even if multiple quadrants become inoperative due to failure or compromise; 2)

Byzantine-tolerant interactions among the system managers that guarantee that overall core

behavior will be properly managed/coordinated if one system manager is compromised,

and that good (although not Byzantine-resilient) core management/coordination will still

be available if multiple system managers are down; and 3) coordination among policy

servers.

4.2.2 The Design-Level IAC for DPASA

The DPASA IT-JBI has provided an important test of the security co-design and IAC con-

cepts, resulting in significant refinements of both concepts. We now present an overview of

the design-level IAC for the DPASA IT-JBI. The development of this IAC was supported

largely by the DPASA project under the sponsorship of the OASIS Dem/Val program, and

was performed by a large team from several organizations. The representation of the IAC

in SEAS was performed as part of the Cyberscience research.

The IAC for the DPASA IT-JBI is large and complex. The full, textual version of the

IAC was produced by the DPASA project and is presented in thatproject’s final validation

report [San03]. The SEAS representation of the IAC is also large and complex and cannot

be completely and legibly presented in this report. The SEASversion of the IAC is best

viewed interactively in SEAS itself. The SEAS objects that capture the DPASA IAC, along

with a version of SEAS with installation and use instructions, are provided as a separate

38

Client Client Client Client• • • • • •
Client

Zone

SM/PS B PSQ B

PSQ C

PSQ D

SM/PS C

SM/PS D

SM
D

SM
C

SM
B

System Manager

Quadrant A

NIDS

PSQ Server

Quadrant D

Executive Zone

Crumple Zone

Operations Zone
Guardian Downstream Controller

Quadrant C Quadrant B

WAN

Managed

Switch

Access Proxy

Hub

Hub
Quadrant

Isolation Switch
Router

Correlator

Repositories

Policy Server

Figure 5: Architecture of a DPASA IT-JBI core quadrant.

39

deliverable.10

Types of Evidence One of the major differences between the IACs for DPASA and DIT

is in the diversity and volume of evidence assembled, which is much greater in the DPASA

case. This is partly the result of the scope and scale of DPASAitself, which is a more

complex system. It is also partly the result of more stringent and specific survivability

requirements for DPASA, many of which are expressed quantitatively. The presence of

quantitative requirements poses a significant challenge inthe development of the IAC, es-

pecially at the design stage, when there are few, if any, artifacts (such as hardware and

software) that can be directly evaluated and measured. In the case of DPASA, many of

the quantitative aspects of survivability were evaluated through simulation modeling, us-

ing an abstract mathematical model of the system that aimed to be faithful to the design

throughout the evolution of the system.

Other aspects of the design could be measured more directly,since the design specified the

use of certain well-developed and well-understood components, such as intrusion detection

systems and policy-driven network interface cards. Still other aspects of the design could be

dealt with in more abstract terms, using structured arguments (at various levels of formality,

ranging from plain English to mathematical logic) and exploratory approaches, such as

whiteboarding.

These various forms of design validation were applied according to their appropriateness,

10As noted earlier, SEAS was developed partly under DARPA sponsorship by SRI’s Artificial Intelligence

Center (AIC). SEAS was originally developed to operate on Sun hardware running the Solaris operating

system. To facilitate the use of SEAS in open-source computing environments (including SDL), the Cyber-

science project produced a version of SEAS patched to operate on PC hardware running various versions of

the GNU/Linux operating system. This patched version of SEAS is provided to the Government under the

same terms as the original version.

40

given the specific characteristics of the design elements being evaluated and the nature of

the requirements placed on those design elements. More specifically, the following kinds

of evidence were integrated into the IAC:� Logical argumentation.Construction of a plain-English structured argument alleg-

ing that a stated property of the design is true. In particular, if the property is of the

form the design satisfies requirementR andR is not quantitative, this technique can

be used to establish validity. Logical argumentation is also useful in verifying a log-

ical decomposition of a requirement into subrequirements (provided the requirement

admits such a decomposition).� Probabilistic modeling.Construction of a simulation model of the system (based

on design documentation) as it operates in a representativeuse/attack environment.

Solution of the model (values of measures defined on the model) can then determine

whether a given requirement (with nontrivial probabilistic quantification) is satisfied.� Experimentation.Experiments with actual system components or prototypes. Re-

sults obtained here can sometimes be elevated so as to validate the design with re-

spect to a higher-level requirement. Experimental resultsare also used to estimate

parameter values used in simulation models.� Threat and vulnerability assessment.Analysis of effects due to possible threats to the

system or vulnerabilities in the system. Results obtained can increase confidence in

the design (if positive) or suggest design modifications (ifnegative). Results of such

assessments are also useful with regard to representing attack effects in probabilistic

models.� Whiteboarding.An approach for evaluating the relative strengths and weaknesses of

a system design or implementation. In the context of our validation effort, it can be

41

viewed as an experiment that tests the following hypothesis: The IT-JBI design meets

its assurance requirements. Accordingly, this activity isintended to gather data that

convincingly supports or refutes this hypothesis.

The evidence referred to at the outset is design related in the sense that it testifies to desired

properties of the design itself (or existing component implementations) that the practices

followed during the design’s conception. Accordingly, it does not refer to peripheral evi-

dence, such as the reputation or experience of the designers, although such evidence could

certainly contribute to a convincing IAC.

Design-related evidence can be further classified according to whether or not it testifies to

satisfying a specific requirement. Such a requirement can beat the top level (mission- or

system-level requirements) or at a lower level that leads tosatisfaction of a higher-level

requirement. More precisely, evidence is requirement related if, for some specified or

derived requirement concerning the design in question, it attests to the assertion that the

design satisfies the requirement (or, indeed, if it attests to the contrary).

Other types of design-related evidence need not be linked toa specific requirement, for ex-

ample, evidence that testifies to the design’s general ability to prevent or tolerate intrusions

due to various types of attacks. Results of threat/vulnerability analyses and whiteboarding

are typically in this category.

DPASA IAC Development Generally, a requirement at a relatively high level is first

decomposed into subrequirements by iterating a process of logical decomposition resulting

in a decomposition tree for the root requirement, as described in Section 2. In turn, such a

tree can usually be simplified by coalescing multiple occurrences of a subrequirement, in

which case the tree is technically a directed acyclic graph (DAG).

An essential ingredient of any validation effort is carefully stated design requirements that

42

accurately and unambiguously capture desired properties of an eventual implementation.

The principal requirement for the DPASA IT-JBI design is thefollowing:

R1. The design, when implemented, will provide satisfactory mission support under real

use scenarios and in the face of cyber attacks.

Although this requirement is rather obvious, it requires a more precise definition of terms

such as “satisfactory mission support,” “use scenarios,” and “cyber attacks” to obtain con-

vincing evidence that R1 is indeed satisfied. To that end, several high-level requirements of

a more specific nature are the following survivability goalsof the JBI exemplar, as stated

in the OASIS Dem/Val Proposer Information Pamphlet (PIP), and which are referred to as

the “PIP requirements”:

PIP-1. Provide 100% of JBI critical functionality when under sustained attack by a Class-

A red team with 3 months of planning.

PIP-2. Detect 95% of large-scale attacks within 10 minutes of attack initiation, and 99%

of attacks within 4 hours, with less than 1% false alarm rate.

PIP-3. Prevent 95% of attacks from achieving attacker objectives for 12 hours.

PIP-4. Reduce low-level alerts by a factor of 1,000 and display meaningful attack state

alarms.

PIP-5. Show survivability versus cost/performance trade-offs.

Note that PIP-5 is irrelevant with respect to R1; that is, mission objectives can be satisfied

whether or not the tradeoff goal is accomplished.

The PIP requirements are then grouped and decomposed as depicted in Figure 6. Although

the remainder of the IAC structure cannot be depicted legibly here in its entirety, a sense

43

PIP-requirements

1-4

JBI survivability

req’s
JBI intrusion

detection req’s

Initialized JBI

provides essential

services

JBI is properly

initialized

Authorized

publish is

processed

successfully

Authorized

subscribe is

processed

successfully

Authorized

query is

processed

successfully

Authorized

join/leave is

processed

successfully

Unauthorized

activity is

properly

rejected

Confidential

info is not

exposed

IDS/Corr req’s

Figure 6: Decomposition of top-level requirements.

of its size, scope, and general structure can be gleaned fromthe graph in Figure 7. An

interactive, browsable version of the IAC structure is supplied with the SEAS software

provided as a separate deliverable.

The DPASA IAC is currently not complete enough to make firm conclusions about the

whether the DPASA design, when implemented, will meet the JBI survivability objectives.

Not all areas of the IAC structure have been completely fleshed out, even at the design level.

In those parts of the IAC that have been detailed as far as the design permits, evidence

remains subject to human interpretation, and in the quantitative assessments, significant

uncertainty remains. In the SEAS representation of the IAC,this uncertainty is directly re-

flected in the assignment of values representing strength ofevidence. That is, on the SEAS

scale of 1/green (which, for IACs, we interpret as meaningvery likely, in response to a pos-

itively phrased question pertaining to survivability) to 5/red (interpreted asvery unlikely),

we represent uncertainty as 3/yellow (meaningas likely as not). One might argue that a

conservative estimation of evidential strength calls for the assignment of a value such as

5/red in the absence of strong evidence to support an IA claim. However, we have taken the

44

view that, in the absence of evidence, a claim is neither supported nor refuted. The values

5/red and 4/orange are reserved for cases in which the available evidence arguesagainstan

IA claim, while the values 2/yellow-green and 1/green are used when the evidence supports

the claim. To ensure that uncertainty does not lead to a falsesense of support for high-level

IA claims, we use strength propagation rules (see Section 3.2) that appropriately account

for the uncertainty at the top level.11

11In fact, SEAS is intended to capture uncertainty directly, through the assignment of multiple values that

represent the range of possible responses (or through the assignment of no value at all, meaning complete

uncertainty). However, we have found that the available fusion methods in SEAS do not propagate such

uncertainty in a way that we find intuitive for IACs. We have therefore opted to “overload” the middle value

(3/yellow) to represent uncertainty, which we concede is itself not an optimal solution.

45

P
IP
 r
e
q
u
ir
e
m
e
n
ts
 1
 –
4

J
B
I
 s
u
rv
iv
a
b
il
it
y

re
q
u
ir
e
m
e
n
ts

In
it
ia
li
z
e
d
 J
B
I
p
ro
v
id
e
s

e
s
s
e
n
ti
a
l
s
e
rv
ic
e
s

A
u
th
o
ri
z
e
d
 p
u
b
lis
h
 i
s

p
ro
c
e
s
s
e
d
 s
u
c
c
e
s
s
fu
ll
y

C
o
n
fi
d
e
n
ti
a
lit
y

D
a
ta
fl
o
w

T
im
e
li
n
e
s
s

In
te
g
ri
ty

(f
ro
m
 f
u
n
c
ti
o
n
a
l

m
o
d
e
l
e
x
e
c
u
ti
o
n
)

C
o
m
p
o
n
e
n
t
M
o
d
e
l

A
s
s
u
m
p
ti
o
n
s
 H
o
ld

J
B
I
in
tr
u
s
io
n
 d
e
te
c
ti
o
n

re
q
u
ir
e
m
e
n
ts

P
A
1
:
C
lie
n
t-

C
o
re

C
o
m
m
u
n
ic
a
ti
o
n

I
&
 C

P
A
2
:
A
lt
e
rn
a
te

P
a
th

A
v
a
ila
b
ili
ty

Q
A
1
:
Q
IS

In
c
o
rr
u
p
ti
b
ili
ty

Q
A
2
:
Q
IS

C
o
m
m
u
n
ic
a
ti
o
n

C
u
to
ff

Q
A
3
:
Q
IS

In
p
u
t

In
te
g
ri
ty

Q
A
4
:
Q
IS

F
u
n
c
ti
o
n

C
o
rr
e
c
tn
e
s
s

A
A
1
:
A
P

F
u
n
c
ti
o
n

C
o
rr
e
c
tn
e
s
s

A
A
2
:
A
P

A
p
p
lic
a
ti
o
n
-

la
y
e
r
In
te
g
ri
ty

A
A
3
:
A
P

A
p
p
lic
a
ti
o
n
-l
a
ye
r

C
o
n
fi
d
e
n
ti
a
lit
y

D
A
1
:
D
C

C
o
m
m
u
n
ic
a
ti
o
n
s

S
A
1
:
IO

In
te
g
ri
ty
 i
n

P
S
Q
 S
e
rv
e
r

S
A
2
:
C
lie
n
t

C
o
n
fi
d
e
n
ti
a
lit
y

in
 P
S
Q
 S
e
rv
e
r

S
A
3
:
IO

A
u
th
e
n
ti
c
it
y

S
A
4
:
N
e
tw
o
rk
-

la
y
e
r
I
&
 C

S
e
A
1
:
S
e
n
s
o
r

F
a
ls
e
 A
la
rm

R
a
te

S
e
A
2
:
S
e
n
s
o
r

D
e
te
c
ti
o
n
 D
e
la
y

S
e
A
3
:
S
e
n
s
o
r

D
e
te
c
ti
o
n

P
ro
b
a
b
ili
ty

C
o
A
1
:

C
o
rr
le
a
to
r

F
a
ls
e
 A
la
rm

R
a
te

M
A
1
:
S
M
 B
y
z
a
n
ti
n
e

A
g
re
e
m
e
n
t

P
s
A
1
:
A
D
F

P
o
li
c
y
 S
e
rv
e
r

In
p
u
t

C
o
rr
e
c
tn
e
s
s

P
s
A
2
:
A
D
F

P
o
li
c
y
 S
e
rv
e
r

S
y
n
c
h
ro
n
iz
a
ti
o
n

S
y
s
te
m
 C
o
n
n
e
c
ti
v
it
y

P
h
y
s
ic
a
l
T
o
p
o
lo
g
y

N
e
tw
o
rk
 T
o
p
o
lo
g
y

R
e
s
tr
ic
te
d
 R
o
u
ti
n
g

N
o
 T
u
n
n
e
li
n
g
 A
tt
a
c
k
s

S
E
L
in
u
x

S
o
la
ri
s

W
in
d
o
w
s

T
y
p
e
 E
n
fo
rc
e
m
e
n
t

H
a
rd
e
n
e
d
 K
e
rn
e
l

IK
E
N
A
 S
to
rm
W
a
tc
h

P
la
tf
o
rm
 M
e
c
h
a
n
is
m
s

P
ro
c
e
s
s
 D
o
m
a
in

P
o
li
c
ie
s

P
ri
v
a
te
 K
e
y

C
o
n
fi
d
e
n
ti
a
li
ty

N
o
 U
n
a
u
th
o
ri
z
e
d

D
ir
e
c
t
A
c
c
e
s
s

K
e
y
s
 P
ro
te
c
te
d

fr
o
m
 T
h
e
ft

D
o
D
C
o
m
m
o
n

A
c
c
e
s
s
 C
a
rd
 (
C
A
C
)

P
K
C
S
 #
1
1

T
a
m
p
e
rp
ro
o
f

K
e
y
s
 N
o
t
G
u
e
s
s
a
b
le

A
lg
o
ri
th
m
ic

F
ra
m
e
w
o
rk

K
e
y
 L
e
n
g
th

K
e
y
 L
if
e
ti
m
e

N
o
 U
n
a
u
th
o
ri
z
e
d

In
d
ir
e
c
t
A
c
c
e
s
s

P
h
ys
ic
a
l
P
ro
te
c
ti
o
n

o
f
C
A
C
 d
e
v
ic
e

P
ro
te
c
ti
o
n
 o
f
C
A
C

A
u
th
e
n
ti
c
a
ti
o
n
 D
a
ta

N
o
 C
o
m
p
ro
m
is
e
 o
f

A
u
th
o
ri
z
e
d
 P
ro
c
e
s
s

A
c
c
e
s
s
in
g
 C
A
C

N
o
 C
ry
p
to
g
ra
p
h
y

in
 A
c
c
e
s
s
 P
ro
x
y

N
o
t

P
re
c
o
n
fi
g
u
re
d

N
o
t

R
e
c
o
n
fi
g
u
ra
b
le

A
D
F
 N
IC

s
e
rv
ic
e
s

p
ro
te
c
te
d

A
D
F
 C
o
rr
e
c
tn
e
s
s

A
D
F
 N
IC
 P
h
y
s
ic
a
l

S
e
c
u
ri
ty

A
D
F
 N
IC
 F
ir
m
w
a
re

In
it
ia
li
z
a
ti
o
n

A
D
F
 K
e
y
 I
n
it
ia
li
z
a
ti
o
n

A
D
F
 A
g
e
n
t

In
it
ia
li
z
a
ti
o
n

A
D
F
 P
ro
to
c
o
l

C
o
rr
e
c
tn
e
s
s

A
D
F
 H
o
s
t

In
d
e
p
e
n
d
e
n
c
e

A
D
F
 A
g
e
n
t

C
o
rr
e
c
tn
e
s
s

V
P
G
 I
n
te
g
ri
ty

V
P
G

C
o
n
fi
d
e
n
ti
a
lit
y

P
o
li
c
y
 S
e
rv
e
r

In
te
g
ri
ty

A
D
F
 P
o
lic
y

C
o
rr
e
c
tn
e
s
s

C
o
rr
e
c
tn
e
s
s
 o
f

R
e
g
is
tr
a
ti
o
n

P
ro
to
c
o
l

C
o
rr
e
c
tn
e
s
s
 o
f

R
e
a
tt
a
c
h
m
e
n
t

P
ro
to
c
o
l

H
a
rd
-w
ir
e
d

C
o
n
fi
g
u
ra
ti
o
n

E
le
c
tr
ic
a
lly

Is
o
la
te
d

P
h
y
s
ic
a
lly

P
ro
te
c
te
d

C
o
n
n
e
c
ti
v
it
y P
h
y
s
ic
a
l

In
te
g
ri
ty

E
le
c
tr
ic
a
l

In
te
g
ri
ty

G
a
te

C
o
n
fi
g
u
ra
ti
o
n
 a
n
d

T
ru
th
 T
a
b
le

P
ro
x
y
 P
ro
to
c
o
l

C
o
n
fi
g
u
ra
ti
o
n

C
a
n
 I
d
e
n
ti
fy

M
a
lf
o
rm
e
d
 T
ra
ff
ic

C
o
rr
e
c
tn
e
s
s
 o
f

R
a
te
 C
o
n
tr
o
l

M
e
c
h
a
n
is
m
s

C
o
rr
e
c
tn
e
s
s
 o
f

C
e
rt
if
ic
a
te

E
x
c
h
a
n
g
e

ID
S
 E
x
p
e
ri
m
e
n
ta
l

E
v
a
lu
a
ti
o
n

C
o
rr
e
c
tn
e
s
s
 o
f
M
o
d
if
ie
d

IT
U
A
 P
ro
to
c
o
ls

F
u
n
c
ti
o
n
a
l
m
o
d
e
l

fa
it
h
fu
l
 t
o
 d
e
s
ig
n

ID
S
 /
 C
o
rr
e
la
ti
o
n

re
q
u
ir
e
m
e
n
ts

IO
 C
o
n
fi
d
e
n
ti
a
lit
y

(e
n
d
-t
o
-e
n
d
)

IC
o
n
fi
d
e
n
ti
a
lit
y
o
f

N
e
tw
o
rk

C
o
m
m
u
n
ic
a
ti
o
n
s

C
o
n
fi
d
e
n
ti
a
l
in
fo
 i
s

n
o
t
e
x
p
o
s
e
d

U
n
a
u
th
o
ri
z
e
d
 a
c
ti
v
it
y

is
 p
ro
p
e
rl
y
 r
e
je
c
te
d

A
u
th
o
ri
z
e
d
 j
o
in
/l
e
a
v
e

is
 p
ro
c
e
s
s
e
d

s
u
c
c
e
s
s
fu
lly

A
u
th
o
ri
z
e
d
 q
u
e
ry
 i
s

p
ro
c
e
s
s
e
d

s
u
c
c
e
s
s
fu
lly

A
u
th
o
ri
z
e
d
 s
u
b
s
c
ri
b
e
 i
s

p
ro
c
e
s
s
e
d
 s
u
c
c
e
s
s
fu
ll
y

J
B
I
 i
s
 p
ro
p
e
rl
y

in
it
ia
liz
e
d

D
e
s
ig
n
 T
e
a
m
 R
e
v
ie
w

A
tt
a
c
k
 M
o
d
e
l

A
s
s
u
m
p
ti
o
n
s
 H
o
ld

F
u
n
c
ti
o
n
a
l
M
o
d
e
l

A
s
s
u
m
p
ti
o
n
s
 H
o
ld

In
fr
a
s
tr
u
c
tu
re

A
tt
a
c
k

P
ro
p
a
g
a
ti
o
n

D
a
ta
 A
tt
a
c
k

P
ro
p
a
g
a
ti
o
n

A
tt
a
c
k
s

O
ri
g
in
a
te

O
u
ts
id
e
 t
h
e

P
la
tf
o
rm

N
o
 D
a
ta

A
tt
a
c
k
s

O
u
ts
id
e
 t
h
e

P
la
tf
o
rm

In
it
ia
l
T
a
rg
e
ts

o
f

In
fr
a
s
tr
u
c
tu
re

A
tt
a
c
k
s

Is
o
la
ti
o
n
 o
f

In
tr
u
d
e
d

P
ro
c
e
s
s

D
o
m
a
in
s

T
a
rg
e
ts
 f
o
r

L
o
s
s
 o
f
IO

C
o
n
fi
d
e
n
ti
a
lit
y

N
o

C
o
m
p
ro
m
is
e

o
r
F
a
ilu
re
 o
f

Q
IS

D
o
S
C
a
u
s
e
s

P
ro
c
e
s
s
in
g

D
e
la
y
s

D
o
S
D
o
e
s

N
o
t
C
o
rr
u
p
t

O
th
e
r

C
o
m
p
o
n
e
n
ts

D
o
S
A
tt
a
c
k
s

D
o
 N
o
t

P
ro
p
a
g
a
te
 f
ro
m

C
li
e
n
ts
 t
o
 C
o
re

D
e
s
ig
n

F
a
it
h
fu
ll
y

Im
p
le
m
e
n
te
d

A
b
s
e
n
c
e
 o
f

In
s
id
e
r
T
h
re
a
t

A
tt
a
c
k
 M
o
d
e
l

P
a
ra
m
e
te
r

S
e
le
c
ti
o
n

C
E
R
T

V
u
ln
e
ra
b
il
it
y

D
B
 A
n
a
ly
s
is

V
a
ri
a
ti
o
n
 o
v
e
r

A
n
ti
c
ip
a
te
d

R
a
n
g
e
s

C
o
rr
e
c
tn
e
s
s
 o
f

M
a
n
a
g
e
d
 S
w
it
c
h

IO
 C
o
n
fi
d
e
n
ti
a
li
ty

in
 T
ra
n
s
it

IO
 C
o
n
fi
d
e
n
ti
a
li
ty

in
 S
to
ra
g
e

C
o
n
fi
d
e
n
ti
a
lit
y
 o
f

A
p
p
li
c
a
ti
o
n
-l
a
y
e
r

M
e
s
s
a
g
e
s

P
IP
 r
e
q
u
ir
e
m
e
n
ts
 1
 –
4

J
B
I
 s
u
rv
iv
a
b
il
it
y

re
q
u
ir
e
m
e
n
ts

In
it
ia
li
z
e
d
 J
B
I
p
ro
v
id
e
s

e
s
s
e
n
ti
a
l
s
e
rv
ic
e
s

A
u
th
o
ri
z
e
d
 p
u
b
lis
h
 i
s

p
ro
c
e
s
s
e
d
 s
u
c
c
e
s
s
fu
ll
y

C
o
n
fi
d
e
n
ti
a
lit
y

D
a
ta
fl
o
w

T
im
e
li
n
e
s
s

In
te
g
ri
ty

(f
ro
m
 f
u
n
c
ti
o
n
a
l

m
o
d
e
l
e
x
e
c
u
ti
o
n
)

C
o
m
p
o
n
e
n
t
M
o
d
e
l

A
s
s
u
m
p
ti
o
n
s
 H
o
ld

J
B
I
in
tr
u
s
io
n
 d
e
te
c
ti
o
n

re
q
u
ir
e
m
e
n
ts

P
A
1
:
C
lie
n
t-

C
o
re

C
o
m
m
u
n
ic
a
ti
o
n

I
&
 C

P
A
2
:
A
lt
e
rn
a
te

P
a
th

A
v
a
ila
b
ili
ty

Q
A
1
:
Q
IS

In
c
o
rr
u
p
ti
b
ili
ty

Q
A
2
:
Q
IS

C
o
m
m
u
n
ic
a
ti
o
n

C
u
to
ff

Q
A
3
:
Q
IS

In
p
u
t

In
te
g
ri
ty

Q
A
4
:
Q
IS

F
u
n
c
ti
o
n

C
o
rr
e
c
tn
e
s
s

A
A
1
:
A
P

F
u
n
c
ti
o
n

C
o
rr
e
c
tn
e
s
s

A
A
2
:
A
P

A
p
p
lic
a
ti
o
n
-

la
y
e
r
In
te
g
ri
ty

A
A
3
:
A
P

A
p
p
lic
a
ti
o
n
-l
a
ye
r

C
o
n
fi
d
e
n
ti
a
lit
y

D
A
1
:
D
C

C
o
m
m
u
n
ic
a
ti
o
n
s

S
A
1
:
IO

In
te
g
ri
ty
 i
n

P
S
Q
 S
e
rv
e
r

S
A
2
:
C
lie
n
t

C
o
n
fi
d
e
n
ti
a
lit
y

in
 P
S
Q
 S
e
rv
e
r

S
A
3
:
IO

A
u
th
e
n
ti
c
it
y

S
A
4
:
N
e
tw
o
rk
-

la
y
e
r
I
&
 C

S
e
A
1
:
S
e
n
s
o
r

F
a
ls
e
 A
la
rm

R
a
te

S
e
A
2
:
S
e
n
s
o
r

D
e
te
c
ti
o
n
 D
e
la
y

S
e
A
3
:
S
e
n
s
o
r

D
e
te
c
ti
o
n

P
ro
b
a
b
ili
ty

C
o
A
1
:

C
o
rr
le
a
to
r

F
a
ls
e
 A
la
rm

R
a
te

M
A
1
:
S
M
 B
y
z
a
n
ti
n
e

A
g
re
e
m
e
n
t

P
s
A
1
:
A
D
F

P
o
li
c
y
 S
e
rv
e
r

In
p
u
t

C
o
rr
e
c
tn
e
s
s

P
s
A
2
:
A
D
F

P
o
li
c
y
 S
e
rv
e
r

S
y
n
c
h
ro
n
iz
a
ti
o
n

S
y
s
te
m
 C
o
n
n
e
c
ti
v
it
y

P
h
y
s
ic
a
l
T
o
p
o
lo
g
y

N
e
tw
o
rk
 T
o
p
o
lo
g
y

R
e
s
tr
ic
te
d
 R
o
u
ti
n
g

N
o
 T
u
n
n
e
li
n
g
 A
tt
a
c
k
s

S
E
L
in
u
x

S
o
la
ri
s

W
in
d
o
w
s

T
y
p
e
 E
n
fo
rc
e
m
e
n
t

H
a
rd
e
n
e
d
 K
e
rn
e
l

IK
E
N
A
 S
to
rm
W
a
tc
h

P
la
tf
o
rm
 M
e
c
h
a
n
is
m
s

P
ro
c
e
s
s
 D
o
m
a
in

P
o
li
c
ie
s

P
ri
v
a
te
 K
e
y

C
o
n
fi
d
e
n
ti
a
li
ty

N
o
 U
n
a
u
th
o
ri
z
e
d

D
ir
e
c
t
A
c
c
e
s
s

K
e
y
s
 P
ro
te
c
te
d

fr
o
m
 T
h
e
ft

D
o
D
C
o
m
m
o
n

A
c
c
e
s
s
 C
a
rd
 (
C
A
C
)

P
K
C
S
 #
1
1

T
a
m
p
e
rp
ro
o
f

K
e
y
s
 N
o
t
G
u
e
s
s
a
b
le

A
lg
o
ri
th
m
ic

F
ra
m
e
w
o
rk

K
e
y
 L
e
n
g
th

K
e
y
 L
if
e
ti
m
e

N
o
 U
n
a
u
th
o
ri
z
e
d

In
d
ir
e
c
t
A
c
c
e
s
s

P
h
ys
ic
a
l
P
ro
te
c
ti
o
n

o
f
C
A
C
 d
e
v
ic
e

P
ro
te
c
ti
o
n
 o
f
C
A
C

A
u
th
e
n
ti
c
a
ti
o
n
 D
a
ta

N
o
 C
o
m
p
ro
m
is
e
 o
f

A
u
th
o
ri
z
e
d
 P
ro
c
e
s
s

A
c
c
e
s
s
in
g
 C
A
C

N
o
 C
ry
p
to
g
ra
p
h
y

in
 A
c
c
e
s
s
 P
ro
x
y

N
o
t

P
re
c
o
n
fi
g
u
re
d

N
o
t

R
e
c
o
n
fi
g
u
ra
b
le

A
D
F
 N
IC

s
e
rv
ic
e
s

p
ro
te
c
te
d

A
D
F
 C
o
rr
e
c
tn
e
s
s

A
D
F
 N
IC
 P
h
y
s
ic
a
l

S
e
c
u
ri
ty

A
D
F
 N
IC
 F
ir
m
w
a
re

In
it
ia
li
z
a
ti
o
n

A
D
F
 K
e
y
 I
n
it
ia
li
z
a
ti
o
n

A
D
F
 A
g
e
n
t

In
it
ia
li
z
a
ti
o
n

A
D
F
 P
ro
to
c
o
l

C
o
rr
e
c
tn
e
s
s

A
D
F
 H
o
s
t

In
d
e
p
e
n
d
e
n
c
e

A
D
F
 A
g
e
n
t

C
o
rr
e
c
tn
e
s
s

V
P
G
 I
n
te
g
ri
ty

V
P
G

C
o
n
fi
d
e
n
ti
a
lit
y

P
o
li
c
y
 S
e
rv
e
r

In
te
g
ri
ty

A
D
F
 P
o
lic
y

C
o
rr
e
c
tn
e
s
s

C
o
rr
e
c
tn
e
s
s
 o
f

R
e
g
is
tr
a
ti
o
n

P
ro
to
c
o
l

C
o
rr
e
c
tn
e
s
s
 o
f

R
e
a
tt
a
c
h
m
e
n
t

P
ro
to
c
o
l

H
a
rd
-w
ir
e
d

C
o
n
fi
g
u
ra
ti
o
n

E
le
c
tr
ic
a
lly

Is
o
la
te
d

P
h
y
s
ic
a
lly

P
ro
te
c
te
d

C
o
n
n
e
c
ti
v
it
y P
h
y
s
ic
a
l

In
te
g
ri
ty

E
le
c
tr
ic
a
l

In
te
g
ri
ty

G
a
te

C
o
n
fi
g
u
ra
ti
o
n
 a
n
d

T
ru
th
 T
a
b
le

P
ro
x
y
 P
ro
to
c
o
l

C
o
n
fi
g
u
ra
ti
o
n

C
a
n
 I
d
e
n
ti
fy

M
a
lf
o
rm
e
d
 T
ra
ff
ic

C
o
rr
e
c
tn
e
s
s
 o
f

R
a
te
 C
o
n
tr
o
l

M
e
c
h
a
n
is
m
s

C
o
rr
e
c
tn
e
s
s
 o
f

C
e
rt
if
ic
a
te

E
x
c
h
a
n
g
e

ID
S
 E
x
p
e
ri
m
e
n
ta
l

E
v
a
lu
a
ti
o
n

C
o
rr
e
c
tn
e
s
s
 o
f
M
o
d
if
ie
d

IT
U
A
 P
ro
to
c
o
ls

F
u
n
c
ti
o
n
a
l
m
o
d
e
l

fa
it
h
fu
l
 t
o
 d
e
s
ig
n

ID
S
 /
 C
o
rr
e
la
ti
o
n

re
q
u
ir
e
m
e
n
ts

ID
S
 /
 C
o
rr
e
la
ti
o
n

re
q
u
ir
e
m
e
n
ts

IO
 C
o
n
fi
d
e
n
ti
a
lit
y

(e
n
d
-t
o
-e
n
d
)

IC
o
n
fi
d
e
n
ti
a
lit
y
o
f

N
e
tw
o
rk

C
o
m
m
u
n
ic
a
ti
o
n
s

C
o
n
fi
d
e
n
ti
a
l
in
fo
 i
s

n
o
t
e
x
p
o
s
e
d

C
o
n
fi
d
e
n
ti
a
l
in
fo
 i
s

n
o
t
e
x
p
o
s
e
d

U
n
a
u
th
o
ri
z
e
d
 a
c
ti
v
it
y

is
 p
ro
p
e
rl
y
 r
e
je
c
te
d

U
n
a
u
th
o
ri
z
e
d
 a
c
ti
v
it
y

is
 p
ro
p
e
rl
y
 r
e
je
c
te
d

A
u
th
o
ri
z
e
d
 j
o
in
/l
e
a
v
e

is
 p
ro
c
e
s
s
e
d

s
u
c
c
e
s
s
fu
lly

A
u
th
o
ri
z
e
d
 j
o
in
/l
e
a
v
e

is
 p
ro
c
e
s
s
e
d

s
u
c
c
e
s
s
fu
lly

A
u
th
o
ri
z
e
d
 q
u
e
ry
 i
s

p
ro
c
e
s
s
e
d

s
u
c
c
e
s
s
fu
lly

A
u
th
o
ri
z
e
d
 q
u
e
ry
 i
s

p
ro
c
e
s
s
e
d

s
u
c
c
e
s
s
fu
lly

A
u
th
o
ri
z
e
d
 s
u
b
s
c
ri
b
e
 i
s

p
ro
c
e
s
s
e
d
 s
u
c
c
e
s
s
fu
ll
y

A
u
th
o
ri
z
e
d
 s
u
b
s
c
ri
b
e
 i
s

p
ro
c
e
s
s
e
d
 s
u
c
c
e
s
s
fu
ll
y

J
B
I
 i
s
 p
ro
p
e
rl
y

in
it
ia
liz
e
d

J
B
I
 i
s
 p
ro
p
e
rl
y

in
it
ia
liz
e
d

D
e
s
ig
n
 T
e
a
m
 R
e
v
ie
w

A
tt
a
c
k
 M
o
d
e
l

A
s
s
u
m
p
ti
o
n
s
 H
o
ld

F
u
n
c
ti
o
n
a
l
M
o
d
e
l

A
s
s
u
m
p
ti
o
n
s
 H
o
ld

In
fr
a
s
tr
u
c
tu
re

A
tt
a
c
k

P
ro
p
a
g
a
ti
o
n

D
a
ta
 A
tt
a
c
k

P
ro
p
a
g
a
ti
o
n

A
tt
a
c
k
s

O
ri
g
in
a
te

O
u
ts
id
e
 t
h
e

P
la
tf
o
rm

N
o
 D
a
ta

A
tt
a
c
k
s

O
u
ts
id
e
 t
h
e

P
la
tf
o
rm

In
it
ia
l
T
a
rg
e
ts

o
f

In
fr
a
s
tr
u
c
tu
re

A
tt
a
c
k
s

Is
o
la
ti
o
n
 o
f

In
tr
u
d
e
d

P
ro
c
e
s
s

D
o
m
a
in
s

T
a
rg
e
ts
 f
o
r

L
o
s
s
 o
f
IO

C
o
n
fi
d
e
n
ti
a
lit
y

N
o

C
o
m
p
ro
m
is
e

o
r
F
a
ilu
re
 o
f

Q
IS

D
o
S
C
a
u
s
e
s

P
ro
c
e
s
s
in
g

D
e
la
y
s

D
o
S
D
o
e
s

N
o
t
C
o
rr
u
p
t

O
th
e
r

C
o
m
p
o
n
e
n
ts

D
o
S
A
tt
a
c
k
s

D
o
 N
o
t

P
ro
p
a
g
a
te
 f
ro
m

C
li
e
n
ts
 t
o
 C
o
re

D
e
s
ig
n

F
a
it
h
fu
ll
y

Im
p
le
m
e
n
te
d

A
b
s
e
n
c
e
 o
f

In
s
id
e
r
T
h
re
a
t

A
tt
a
c
k
 M
o
d
e
l

P
a
ra
m
e
te
r

S
e
le
c
ti
o
n

C
E
R
T

V
u
ln
e
ra
b
il
it
y

D
B
 A
n
a
ly
s
is

V
a
ri
a
ti
o
n
 o
v
e
r

A
n
ti
c
ip
a
te
d

R
a
n
g
e
s

C
o
rr
e
c
tn
e
s
s
 o
f

M
a
n
a
g
e
d
 S
w
it
c
h

IO
 C
o
n
fi
d
e
n
ti
a
li
ty

in
 T
ra
n
s
it

IO
 C
o
n
fi
d
e
n
ti
a
li
ty

in
 S
to
ra
g
e

IO
 C
o
n
fi
d
e
n
ti
a
li
ty

in
 S
to
ra
g
e

C
o
n
fi
d
e
n
ti
a
lit
y
 o
f

A
p
p
li
c
a
ti
o
n
-l
a
y
e
r

M
e
s
s
a
g
e
s

C
o
n
fi
d
e
n
ti
a
lit
y
 o
f

A
p
p
li
c
a
ti
o
n
-l
a
y
e
r

M
e
s
s
a
g
e
s

Figure 7: High-level structure of IAC.

46

5 Alternative Approaches

Many research efforts have been conducted in order to overcome the lack of a global and

commonly agreed upon process to evaluate whether a system satisfies its security require-

ment. Such a process would include collecting and structuring evidence supporting the

claim that the system indeed satisfies its security requirement. Although several partial

methodologies have been developed, there is still a lack of acomplete methodology that

supports the assembly of a comprehensive IAC. In practice, however, many more or less

advanced methodologies have been proposed and used as a means for certifying computer

systems used in critical areas such as avionics and defense.

Our own research is related to several research areas:� Defining guidelines for building systems that should be secure� Defining and capturing system security requirements� Discovering methods for evaluation of the security of existing systems� Providing technologies for assembling evidence

5.1 Engineering Guidelines for Secure Systems

Research in defining guidelines for building secure systemsand providing evaluation stan-

dards produced an effort of standardization called the “Common Criteria” [Com98].

The Common Criteria project harmonizes European, Canadian, and U.S. Federal Criteria

into the Common Criteria for Information Technology Security Evaluation for use in eval-

uating products and systems and for stating security requirements in a standardized way.

Increasingly, it is replacing national and regional criteria with worldwide criteria accepted

47

by the International Standards Organization. The U.S. Department of Defense published

the first criteria in 1983 as The Trusted Computer Security Evaluation Criteria (TCSEC),

more popularly known as the “Orange Book” [dod85]. The current issue is dated 1985.

U.S. Federal Criteria were drafted in the early 1990s as a possible replacement but were

never formally adopted.

The Common Criteria project identifies seven levels of evaluation assurance, and aims to

develop evaluation criteria for all seven layers that can beapplied to any security-critical

system. While the Common Criteria approach focuses on defining standards for expressing

security requirements and evaluations of systems against those requirements, our focus has

been on the complementary process of assembling the evidence and supporting arguments

into an IAC. Our work is not tied to a particular standard, andcan include a variety of

arguments derived from different evaluation methodologies. Our aim is to go beyond the

standardization effort by allowing the assembly of evidence collected by different method-

ologies in a comprehensive and useful IAC structure.

5.2 Security Evaluation

Several technical advances have been reported by researchers in providing tools and meth-

ods for checking whether a software system satisfies its security requirement, and there-

fore provide evidence and evaluation techniques. Some of those evaluation techniques are

model based. A model of a part of a system is built and checked for nonconformance to

a particular security requirement. Model-based techniques have been used to check secu-

rity protocols [DY83], enforce security policies [Sch00] in operating systems, and model

various aspects of system dependability [DDD+00]. Code-based evaluation techniques use

the concrete implementation in place of a more abstract model and check the source code

for security vulnerabilities. Tools such as Cyclone [JMG+02], CCUred [NMW02], and

48

StackGuard [CPM+98] use dynamic typechecking to check source code for bufferover-

flow vulnerabilities, and insert run-time checks. Fault injection techniques [GOM98] are

a more general way of checking a larger class of security vulnerabilities including buffer

overflow.

5.3 Security Requirements Engineering

While there is general agreement that security requirements engineering is difficult and

needs more attention, there is much less agreement on how it should be done, as demon-

strated by a recent symposium devoted to security requirements [Pur01]. Although there

are compelling arguments for significant use of formal methods in the development of se-

curity requirements [Rus01], current approaches (at leastthose described in the open liter-

ature) tend to be informal (mathematically speaking) and social, guided by developmental

methodologies, and informed by general security principles derived from experience, stan-

dards, and common security practices [Irv01, Ste01, AVP01,SW01, Gas01]. Often there is

a tendency for security requirements development (and the practice of security in general)

to focus more on mechanisms needed to address specific threats and vulnerabilities, rather

than on the overarching objectives of security requirements in terms of their role in meet-

ing mission objectives. As a result, the security requirements as stated in a specification

document may lack context and traceability, both of which are critical, not only to provide

confidence in the correctness of the security requirements themselves, but also to enable

more rapid isolation and resolution of failures to satisfy them. Our proposed co-design

approach explicitly accounts for context and requirementstraceability through the use of

the co-design object base as its central component.

49

5.4 Technologies for Assembling Evidence

5.4.1 Safety Case Development

In the safety domain — as in security — it is usually impossible to show with certainty that

a system is absolutely safe. Instead, one must demonstrate that the system is sufficiently

safe for its purpose. Such a demonstration cannot be a pure “mathematical proof of safety”

(although mathematical proofs can be part of it), but a convincing explanation, supported

by evidence, of why the system is safe enough. Asafety caseis a document where such a

demonstration is developed. More precisely, a safety case can be defined as

a documented body of evidence that provides a convincing andvalid argument

that a system is adequately safe for a given application, in agiven environ-

ment [BB98].

It helps to think of a safety case as a document intended toconvincea rational but skep-

tical person with adequate expertise (say, from a regulatory organization) that a system is

sufficiently safe for being deployed and used.

A safety case is then about a particular system in a particular environment. It makes safety-

related claims about the system, produces supporting evidence, and develops an argument

that the evidence indeed supports the claims. The assumptions and judgments underlying

the argument should also be clear and explicit. Examples of relevant pieces of evidence may

be the design process or tools used, results from fault-treeanalysis or other safety analysis

techniques (cf. [Lev95]), quantitative data about the failure rates of hardware components

or the amount of testing done (testing coverage), proof of correctness of part of the design,

and past field experience [BB98, WKM97]. A difficulty is to combine heterogeneous pieces

of evidence to form a coherent and convincing argument that the system is adequately safe.

50

Specialized tools have been developed to construct and maintain safety cases [BBE+98,

FCM93], but they are essentially structured editors. They help organize and present a

safety case, typically in a diagrammatic fashion, but do nothelp ensure the soundness of

the argument. Generalist tools for developing structured arguments [LHR01] may be more

effective in producing convincing safety cases.

Safety cases provide a model for how heterogeneous data can be used as evidence in a

non-demonstrative, but convincing, argument that a systemhas a desired quality attribute.

5.4.2 Software/Hardware Co-design

Software/hardware co-design emerged in the 1990s as the integrated design of systems im-

plemented using both hardware and software components [Sub93, GD93, MA93, KAJW93,

HDMT94, CGJ+94]. A typical co-design process derives a mixed hardware/software im-

plementation from a single system description. This process involves producing and ana-

lyzing specifications, defining and evaluating architectures, partitioning functions between

hardware and software components, and implementing the components. Co-Design frame-

works [Lee01, LLEL02, BCG+97, LSV98] now include comprehensive sets of verification,

simulation, and synthesis tools supporting the design of complex heterogeneous embed-

ded systems. These co-design frameworks have in common the use of a high-level sys-

tem specification (often combining heterogeneous specification languages) as the starting

point to a rational design, and support for examining, evaluating, and verifying alternative

architectures, partitions, and implementations [LRS+00, OB98, CB98, Ber91, KAJW93,

GSK+01].

Software/hardware co-design provides a model of how a co-design process can address

the tradeoffs required in resolving goals in different design dimensions in a separate-but-

coordinated fashion.

51

5.4.3 KAOS

KAOS [DvF93, DDMv97, vDM95] is a goal-driven requirements engineering method de-

veloped at the Université Catholique de Louvain. KAOS is aimed at supporting the whole

process of requirements elaboration, from the high-level goals to be achieved by a sys-

tem to the objects, operations, and requirements to be implemented. The KAOS language

includes a variety of requirement elaboration concepts, such as goals, requirements, as-

sumptions, agents, views, operations, and scenarios.

KAOS supports a systematic requirements elaboration method based on the identification

and refinement of system goals, the identification of operations and agents relevant to the

goals, and the assignment of operations to agents. Agents are the active entities of a system.

Each agent is responsible for achieving some goals by performing appropriate operations.

Agents can be implemented by software and hardware, but a system may also include

human agents or mechanical devices. Environmental assumptions may be discovered along

the way: typically, responsibilities that are assigned to users or other agents outside of the

software system become environmental assumptions. Goal refinement plays an essential

role. Refinement links are structured in an AND/OR relationship that allows one to explore

and document different refinement alternatives.

The requirements elaboration process is guided by meta-level knowledge explicitly cap-

tured in KAOS. The meta-level provides a rich taxonomy of goals, objects, and operations

with associated heuristic rules and constraints. Heuristics indicate how a certain type of

goal may be refined. For example, the meta-level introduces the category ofsafety goals,

which are a subclass ofavoidance goalsand can be refined intohard requirements[vDL98].

KAOS provides a useful conceptual starting point for the most abstract stages of security

co-design, where system requirements are derived from mission goals. Its main shortcom-

ing is that the concepts it provides are specifically oriented toward functionality rather than

52

security. As a result, security-specific concepts — vulnerabilities, for example — are not

easily represented, and the notion of requirements elaboration is basically the classic notion

of refinement, which guarantees presentation of allowed behavior, but not preservation of

excluded behavior.

5.4.4 UML

The Unified Modeling Language (UML)[BJR99, FS00] is the mostwidely used specifi-

cation notation in industry. It combines concepts from a number of previously popular

methods — including, most prominently, Grady Booch’s work,Ivar Jacobson’s Object-

Oriented Software Engineering (OOSE), James Rumbaugh’s Object Modeling Technique

(OMT), and David Harel’s Statecharts — in a unified framework. Initial work on UML

began in 1994 at Rational, and a standardization effort was initiated by the Object Man-

agement Group (OMG) in 1995. The OMG standard for UML version1.0 was published

in 1997. Among the contributors to the standard were the Digital Equipment Corporation,

Hewlett Packard, IBM, Microsoft, Oracle, and Texas Instruments. The diversity of nota-

tions in UML facilitates hierarchical specification. For example, the structure of the system

architecture can be specified using class diagrams, and further details of the interaction,

such as communication protocols, can be specified using statecharts. In addition, many of

the notations — including both class diagrams and statecharts — support a notion of hori-

zontal refinement, where a single “box” (i.e., class or state) can be expanded into a network

of “boxes and arrows” (i.e., a class diagram or statechart).

Because UML is ade factostandard, it provides a good model of how diverse functional

models should be integrated in the COB.

53

5.4.5 Ada Programming Support Environments

As the design of the Ada programming language matured in the late 1970s, it became clear

that some of its features — such as separate compilation and the INCLUDEandUSEcon-

structs — entailed that compilation must be supported by a somewhat more sophisticated

environment than those of the languages it was intended to replace (primarily, Fortran and

assembler). Thus, an effort to specify the features that an Ada Programming Support En-

vironment (APSE) should include was initiated. Three months prior to the official release

of the final version of the official APSE specification [(HO80], called “STONEMAN”, in

February 1980, a workshop was held in San Diego, California,to provide a forum for a

large number of representatives of industry, academia, andthe government to comment on

a preliminary version of the document. The principal conclusion of the workshop

was that there was no consensus as to what an APSE should look like, and that STONE-

MAN should notbe taken to be a set of firm requirements, but rather an ideal toward which

APSEs should aim.

Clearly, creating a full-featured APSE with powerful system engineering support tools

would require tremendous effort. Although the STONEMAN specification called for ev-

ery life cycle artifact, from early informal statements of requirements through the current

configuration, to be stored in the APSE database, the Ada market never grew sufficiently

to support development of this capability by vendors. Although the value of retaining this

information was generally agreed upon, and sophisticated tools that made use of the infor-

mation were hoped for, the utility of the record was never established in practice.

From the perspective of the proposed research, an APSE database would be deficient in two

respects. First, the emphasis is placed on storing the results of applying a software devel-

opment process (in our case, security co-design), rather than storing a model of the process

itself and a record of how it was applied in the particular case. Thus, crucial information

54

about the source of information (i.e., where it came from andwhy) and interrelationships

among various bits of information would be lost. Second, no emphasis is placed on the

necessity of separating information regarding functionality from information regarding se-

curity and other dependability properties. There is also a general problem with the APSE

perspective: it assumes that the software for a system will be developed within a single

environment. If it is assumed that the present practice of different developers using differ-

ent environments — different editors, different compilers, and even different programming

languages — continues, the COB must be more loosely coupled to the environment.

5.4.6 Knowledge-Based Software Assistant

The report on a knowledge-based software assistant (KBSA) [GLB+83] outlined an am-

bitious approach to developing an expert system to mediate and support all life cycle ac-

tivities. In particular, all decisions concerning requirements, design, validation, imple-

mentation, testing, and maintenance were to be recorded in acomputerized “corporate

memory”. The rationale for the decision was to be included aswell. Subsequently, the

Rome Air Development Center (now, the Air Force Research Laboratory at Rome) funded

development of prototype KBSA “facets” for requirements analysis, specification, devel-

opment, performance evaluation, testing, and project management. While the goals of the

original report were not realized, the prototypes provideda technology base for subse-

quent development of very successful, but more limited, tools, such as Amphion at NASA

Ames [BFH+99] and the Kestrel Institute’s Planware plan synthesis system [BGL+98].

These two tools have primarily focused on domain-specific software synthesis, that is, on

building a domain-specific implementation “facet”. Other researchers have focused on

building domain-specific versions of other facets. However, there seems to have been lit-

tle research and development effort devoted to creating a domain-specific version of the

KBSA infrastructure. Our proposed development of a corporate memory tailored to the

55

needs of security co-design and an explicit knowledge-based representation of the secu-

rity co-design process, designed for use with conventionaldevelopment tools rather than

KBSA facets, represents “simplification for achievability” of the KBSA vision in a new

dimension.

5.4.7 Literate Programming

The literate programming movement, inaugurated by Donald Knuth [Knu94], represents

an attempt to capture the rationale for a program’s design and its source code in a single

document. Both nicely formatted human-readable program documentation and the source

code that is provided to the compiler are generated from thissingle document. The primary

weakness of this scheme, from the point of view of the proposed effort, are

1. the language in which the document is written is designed specifically for the pur-

pose of generation of documentation and source code, ratherthan aiming at a more

general-purpose representation of information from whichother artifacts — a re-

quirements specification, a test suite, and so on — could be generated,

2. the data structure used, a text file, is not suited to storage and retrieval as a collection

of objects in a database,

3. the recorded rationale is in the form of natural language text, and is thus ill-suited to

play any useful role in analysis tools,

4. there is no tool support to encourage recording the complete rationale or to assist in

appropriately structuring it, and

5. what is recorded is typically a final, polished version of the rationale, rather than a

complete historical record of the search for that rationale.

56

While the technology base provided by literate programmingis inappropriate for our ef-

fort, it is worth noting that the basic idea of recording the rationale for a program as it is

developed has led to software of impressive quality. Knuth’s TEX typesetting system, for

example, is generally believed to contain fewer errors thanany other program of compa-

rable size. It seems reasonable to expect that simply recording the security aspects of the

system design process in a form suitable for external reviewwill lead to similar improve-

ments in security levels, even prior to the development of analysis tools.

57

6 Lessons Learned

The Cyberscience project set ambitious goals for advancingthe science and practice of

secure systems development. Although many of our longer-term goals remain to be met,

we believe that our security co-design methodology and accompanying work on the de-

velopment of information assurance cases represent advances in the field of information

assurance, both in terms of our understanding of the challenges in the development of

high-assurance systems and in terms of practical methods for developing such systems.

Of course, research results are rarely unambiguously positive, and ambitious goals are

usually not met completely. In this sense, the results of Cyberscience are not exceptional:

there are positive, affirming results, and other results that point to a clear need for further

research.

6.1 Security Co-design

On the positive side, we believe that our primary hypothesisfor developing the co-design

methodology — namely, that security must be an integral partof secure systems devel-

opment — has been supported fully by our experiences in applying it to three different

systems.

Our first case study in security co-design and IAC development was Genoa CrisisNet,

which was at the time the central storage management component of the Genoa crisis pre-

diction and analysis system.12 We realized at the time that using Genoa CrisisNet as a

case study could be problematic, since it was already in an advanced state of development,

and thus, could not easily serve as an example of security co-design, since the developers

had clearly not applied co-design principles, and we were not at liberty to undertake the

12Somewhat coincidentally, SEAS is a component of Genoa.

58

design from scratch. However, in attempting to construct anassurance argument for Cri-

sisNet, we decided to assume a “clean slate”, developing an abstract design from top-level

requirements (which, unfortunately, had to be reverse-engineered from Genoa use cases

and implemented components). This process quickly uncovered a fundamental weakness

in the design of CrisisNet that could allow its access control mechanisms to be subverted,

providing a clear example of the results that can be expectedfrom failure to account for

security requirements at the outset.13

In the DIT and DPASA cases, we were fortunate to have been involved early enough in the

design process that co-design principles could be applied in an integral way. Although a

full IAC for DIT was never undertaken, the system was demonstrated to meet high-level,

nonquantitative assurance goals, through its ability to serve correct Web content in the face

of successful cyber attack on some components (intrusion tolerance). For DPASA, the jury

is still out; the system is under development and is expectedto be subjected to evaluation by

concerted red-team activity in early 2005. Nevertheless, the design-level IAC did provide

convincing evidence to support claims that a system built toDPASA design specifications

would, with high probability, satisfy its survivability requirements. Anecdotal evidence

gathered throughout the design phase suggests that feedback from validation (IAC) activity

back to the designers did produce observable and measurableimprovement in the design

with respect to survivability goals.

6.2 Experience with SEAS for IACs

Our use of SEAS in the development of a design-level IAC for the DPASA IT-JBI has

identified several strengths of SEAS that we believe should be preserved in any future IAC

13Subsequently, and mostly coincidentally, the Genoa project abandoned CrisisNet in favor of a COTS

product believed to have better security and survivabilitycharacteristics.

59

development tool, and several significant shortcomings that future tools should strive to

overcome.

6.2.1 Strengths of SEAS

Organization and Corporate Memory From the point of view of IAC construction,

SEAS’s greatest value is perhaps as an organizational tool.The tree-structured arguments

that SEAS supports correspond closely to the (acyclic) graph-structured arguments around

which our notion of IACs is built. In fact, it is possible, although awkward, to construct our

more general graph-based (DAG) argument structures using SEAS. In addition, SEAS sup-

ports argument versioning, so that the history and evolution of arguments can be tracked.

Ease of Use SEAS presents a simple and intuitive interface, along with context-sensitive

help, which makes it relatively easy to begin using the SEAS tool fairly quickly. At the

same time, SEAS can be viewed not only as a tool, but also as a paradigm for argument

construction in the intelligence domain. Becoming proficient in the SEAS paradigm re-

quires more time and effort, although significant help and examples are available to assist

in the process. However, not all aspects of the SEAS paradigmappear well suited to IAC

construction, as discussed in Section 6.2.2.

Support for Controlled Collaboration A useful feature of SEAS, both for its intended

application and for IAC construction, is its support for multiuser and collaborative argu-

ment construction. SEAS supports user accounts and hierarchical user groups, and en-

forces access control on SEAS objects (templates, arguments, etc.) based on administrator-

and owner-specified access control lists (ACLs) that define who may read, modify, and

delete specific SEAS objects. Most important, the SEAS paradigm encourages review and

assessment of arguments by multiple users, and the SEAS toolcan record these multiple

60

assessments and highlight areas of agreement, which tends to reinforce confidence in an

argument, and disagreement, which may indicate a need to revisit and revise an argument.

6.2.2 Shortcomings of SEAS

Assessment of Soundness and Completeness Perhaps the most significant shortcom-

ing of SEAS, from the standpoint of IAC support, is the absence of any objective means

(and mechanism for incorporating such means) for assessingthe validity of constructed

arguments. In the SEAS paradigm this assessment is left entirely to the judgment of hu-

man evaluators. While the use of SEAS’s confidence value ranges and simple confidence

propagation functions can assist assessors in identifyingareas of potential weakness in ar-

guments, these values are rooted in subjective assignmentsof values and so must yield

subjective results. Of course, it should be noted that this approach may be well suited

to SEAS’s intended application, but for IAC construction, we need something stronger

to assist argument developers and assessors in determining(to the extent it is possible to

determine objectively) whether assurance arguments are sound and complete.

As an illustration of the issue, consider that SEAS does not make explicit (nor does it

allow the user to make explicit) the intended meaning of the branching of a node in the

argument graph. For example, take the common case where one intends the branching of a

claimA into subclaimsA1; : : : ; An to be a conjunctive implication; that is, claimA holds

if each of subclaimsA1 throughAn holds. As a start, one might desire that the tool simply

evaluate the implication; that is, determine a truth value forA based on the truth values ofA1 throughAn.14 But to assess completeness of support for the claim, one mustestablish

14In fact, for this case, it is possible to emulate the desired behavior in SEAS. One can select a binary range

(green/ red) for the values ofA, A1; : : : ; An, and the fusion methodmaximum(wherered is “stronger” than

green). The value automatically assigned toA will be green(true) if each ofA1 throughAn is assigned

green; otherwise,A will take the valuered (false).

61

that theimplicationis true; that is, we must show that the truth of all subclaimsA1; : : : ; An
is sufficient to establish the truth of claimA. To provide automated support for this sort of

assessment, we require logical specification and reasoningcapabilities (“theorem provers”,

if you will) for experts to use in formulating their arguments. A significant challenge

will be to make such capabilities available without severely compromising the tool’s ease

of use. Of course, it is unreasonable to expect that novices in formal methods will be

able to make effective use of such capabilities as rapidly asthey may learn to use SEAS.

However, we believe that a reasonable compromise would be tomake a “library” of the

most IAC-relevant automated reasoning methods available,along with intuitive interfaces

for specifying the intended relationship of nodes in an argument.

We note, however, that more general notions of completenessin the context of IA argu-

ments are impossible to address with absolute certainty, automated or not. For example,

for any useful system it is not possible to make a “complete” argument that the system is

free of risk to the objectives for the system. However, it maybe more feasible to establish

that the system is free of a particular set of vulnerabilities within a specific threat model.

Integration and Propagation of Results A particular challenge to the use of SEAS in

the DPASA design validation effort has been the need to integrate the results of different

validation techniques and to combine these results into meaningful measures of satisfaction

of the system’s security objectives. For example, a significant part of the validation effort

has involved the use of probabilistic modeling, via stochastic activity networks (SANs)

[DDD+00], to estimate the availability and integrity of certain critical JBI functions (e.g.,

any given attempt to publish an authorized information object in the JBI is expected to

succeed with probability 0.97). The different measures computed from the SAN models

constitute evidence that supports (or perhaps fails to support) higher-level IA claims, and

this evidence is incorporated into the overall IAC structure at the appropriate places. When

62

we have precise, objective (in particular, numeric) evidence to support a claim, we would

like to maintain maximal precision as we proceed “up” the graph in order to determine

more objectively the strength of support for the highest-level claims. But in SEAS we are

forced to make a manual determination of the strength (in terms of the simple 1–5 range

that SEAS supports) of that evidence at the node where the evidence is attached, and the

desired precision is lost (except in cases where the supportis absolute).

Because the SEAS interface is tightly integrated with its Gister-based argumentation en-

gine, it is difficult to extend the reasoning and evidential strength propagation mechanisms

to accommodate additional and, especially, user-defined functions for combining and prop-

agating results. Moreover, it is often the case that some piece of evidence includes a specific

(perhaps numeric) result that is independent of the strength of the evidence. Thus, we be-

lieve it is useful to separate the notions of evidence (results) and evidential strength so that

both may be propagated and used appropriately at higher levels in the argument structure.

As is the case for reasoning about soundness and completeness, the challenge here will be

to include the flexibility to specify result and strength propagation functions without unduly

compromising ease of use.

Process vs. Product SEAS emphasizes theprocessof argumentation, particularly in

terms of interaction and collaboration. These features areof course essential to SEAS’s

role in interagency intelligence analysis and crisis prediction, where one of SEAS’s major

goals is to facilitate collaborative intelligence assessment. These features are clearly of

benefit to IAC development as well. However, we find that thereneeds to be much more

attention given to theproductside of IAC development. In SEAS, the principal product is

an interactively browsable argument, and there is only a very limited capability for export-

ing (fragments of) arguments for use outside the SEAS environment. For IACs, the ability

to generate self-contained representations (such as text documents) of full arguments at

63

user-selectable levels of detail is essential, so that the IAC can be made readily available

for possible noninteractive review by outside assessors and be included as part of other IA

assessment products, such as certification reports.

Constraints on Argument Structure SEAS requires a high degree of regularity and

even symmetry in argument structure. For example, SEAS version 5 requires both that

every nonleaf node in an argument template have the same number of children and that

the tree be “full”, that is, that every root-to-leaf path have the same length. As with other

features of SEAS, this usage constraint was motivated by thenature of SEAS’s intended

application for assisting intelligence analysts in evaluating evidence supporting different

hypotheses. The idea is that, by forcing analysts to frame their arguments in terms of

questions whose answers have equal weight, analysts would be less likely to overestimate

(or underestimate) the relative support each answer provides to the answer for a higher-

level question. Similarly, by forcing analysts to develop each “branch” of an argument to

the same depth, analysts should be more likely to give comparable amounts of attention to

the development of evidence and argumentation to support their answers to questions in the

different branches.

These constraints on argument structure may be appropriatefor evaluating evidence on

intelligence matters, where the evidence tends to be more subjective and the strength of

the evidence necessarily more dependent on human interpretation. For IACs, however,

we have found that attempting to force arguments into regular and symmetric structures is

more likely to skew the results than to balance them. After all, different organizations and

different applications typically have different overall security objectives and therefore place

different emphases on different security attributes such as confidentiality, integrity, and

availability. These differing emphases, together with thevarying availability and strength

of evidence to support IA claims, tend naturally to drive thestructure of IA arguments to

64

be less regular and more asymmetric.

It should be noted, of course, that SEAS’s strong constraints on argument structure have

been relaxed somewhat in version 6, largely in response to feedback from both the intelli-

gence community and our own IAC work. Still, the remaining constraints pose a significant

practical impediment to the rapid creation and evolution offree-form argument structures,

which are best suited to IACs.

65

7 Acknowledgments

Key contributors to the Cyberscience project are Victoria Stavridou, Steve Dawson, Bruno

Dutertre, Fred Gilham, Joshua Levy, Bob Riemenschneider, Hassen Saı̈di, and Tomás

Uribe. Special thanks go to John Lowrance of the SRI Artificial Intelligence Center for

his invaluable advice and assistance with Genoa CrisisNet and SEAS. We also thank Ian

Harrison, Tom Lee, Andres Rodriguez, and Eric Yeh for significant technical assistance

with SEAS. Finally, we thank the many members of the DIT and DPASA teams for their

collaborative efforts in the formulation of information assurance cases for their respective

systems.

66

References

[AVP01] M. Abrams, J. Veoni, and F. Parraga. Application of the Protection Profile to

Define (Security) Requirements for a Telecommunications Service Contract.

In Proceedings of the 1st Symposium on Requirements Engineering for Infor-

mation Security, Indianapolis, IN, March 2001.

[BB98] P. Bishop and R. Bloomfield. A Methodology for Safety Case Develop-

ment. InSafety-Critical Systems Symposium, pages 194–203, Birmingham,

UK, 1998.

[BBE+98] P. Bishop, R. Bloomfield, L. Emmet, C. Jones, and P. Froome. Adelard Safety

Case Development Manual. Adelard, London, 1998.

[BCG+97] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,

C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and

B. Tabbara.Hardware-Software Co-Design of Embedded Systems: The Po-

lis Approach. Kluwer Academic Publishers, 1997.

[Ber91] G. Berry. A Hardware Implementation of PureESTEREL. Technical report,

DEC, Paris Research Laboratory, July 1991.

[BFH+99] W. Buntine, B. Fischer, K. Havelund, M. Lowry, T. Pressburger, S. Roach,

P. Robinson, and J. Van Baalen. Transformation Systems at NASA Ames. In

Proc. Workshop on Software Transformation Systems, May 1999.

[BGL+98] L. Blaine, L. Gilham, J. Liu, D. R. Smith, and S. Westfold.Planware —

Domain-Specific Synthesis of High-Performance Schedulers. In Proc. Thir-

teenth Automated Software Engineering Conf.IEEE Computer Society Press,

October 1998.

67

[BJR99] G. Booch, I. Jacobson, and J. Rumbaugh.Unified Modeling Language User

Guide. Addison-Wesley, 1999.

[BR95] K. Buchenrieder and J. Rozenblit. Codesign. Computer-Aided Soft-

ware/Hardware Engineering, chapter Codesign: An Overview, pages 1–15.

IEEE Computer Science Press, 1995.

[BS93] J. Bowen and V. Stavridou. Safety-Critical Systems,Formal Methods and

Standards.Software Engineering Journal, 8(4):189–209, July 1993.

[CB98] P. Chou and G. Borriello. An Analysis-Based Approachto Composition of

Distributed Embedded Systems. InProceedings of the International Work-

shop on Hardware/Software Codesign (CODES’98), pages 3–7, Seattle, WA,

March 1998.

[CGJ+94] M. Chiodo, P. Giusto, A. Jurecska, H. C. Hsieh, A. Sangiovanni-Vincentelli,

and L. Lavagno. Hardware-Software Codesign of Embedded Systems. IEEE

Micro, 14(4):26–36, August 1994.

[CMS01] R. Canetti, C. Meadows, and P. Syverson. Environmental Requirements for

Authentication Protocols. InProceedings of the 1st Symposium on Require-

ments Engineering for Information Security, Indianapolis, IN, March 2001.

[Com98] Common Criteria Project Sponsoring Organisations. ISO/IEC Standard

15408. Common Criteria for Information Technology Security Evaluation,

November 1998.

http://www.commoncriteria.org/ .

[CPM+98] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole,Peat Bakke, Steve

Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stack-

68

Guard: Automatic adaptive detection and prevention of buffer-overflow at-

tacks. InProc. 7th USENIX Security Conference, pages 63–78, January 1998.

[DDD+00] D. Daly, D.D. Deavours, J.M. Doyle, P.G. Webster, and W.H. Sanders.

Möbius: An extensible tool for performance and dependability modeling. In

B.R. Haverskort, H.C. Bohnenkamp, and C.U. Smith, editors,Computer Per-

formance Evaluation: Modelling Techniques and Tools: Proceedings of the

11th International Conference (TOOLS 2000), volume 1786 ofLecture Notes

in Computer Science, pages 332–336. Springer, March 2000.

[DDMv97] R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde. GRAIL/KAOS:

An Environment for Goal-Driven Requirements Engineering.In Proceed-

ings of the 19th International Conference on Software Engineering (ICSE’97),

pages 612–623, May 1997.

[De 94] G. De Micheli. Computer-Aided Hardware-Software Codesign.IEEE Micro,

14(4):10–16, August 1994.

[DMS95] Kemal A. Delic, Franco Mazzanti, and Lorenzo Strigini. Formalizing a soft-

ware safety case via belief networks. Technical Report SHIP/T/046, IEI-CNR,

Pisa, Italy, August 1995.

[dod85] Trusted computer system evaluation criteria [orange book]. Department of

Defense, Standard DoD 5200.28-STD, December 1985.

[DvF93] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-Directed Require-

ments Acquisition.Science of Computer Programming, 20(1–2):3–50, April

1993.

[DY83] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE

Transactions on Information Theory, 29(2), 1983.

69

[FCM93] J. Forder, Higgins C., and J. McDermid. SAM – A Tool toSupport the Con-

struction, Review and Evolution of Safety Arguments. InProc. of the Safety

Critical Systems Symposium, February 1993.

[FP91] D. W. Franke and M. K. Purvis. Hardware/software Codesign: A Perspective.

In Proceedings of the13th International Conference on Software Engineer-

ing, pages 344–352, May 1991.

[FS00] M. Fowler and K. Scott.UML Distilled: A Brief Guide to the Standard Object

Modeling Language. Addison-Wesley, second edition, 2000.

[Gar96] D. Garlan. Style-Based Refinement for Software Architecture. InJoint Pro-

ceedings of the Second International Software Architecture Workshop (ISAW-

2) and the International Workshop on Multiple Perspectivesin Software De-

velopments (Viewpoints’96), San Francisco, CA, October 1996.

[Gas01] G. Gaskell. An Analysis of BS7799 and Requirements for eCommerce. In

Proceedings of the 1st Symposium on Requirements Engineering for Informa-

tion Security, Indianapolis, IN, March 2001.

[GD93] R. Gupta and G. De Micheli. Hardware-software co-synthesis for digital sys-

tems.IEEE Design & Test, 10(3), September 1993.

[GLB+83] C. Green, D. Luckham, R. Balzer, T. Cheatham, and C. Rich.Report on a

Knowledge-Based Software Assistant. Technical Report RADC TR 83-195,

Rome Air Development Center, June 1983. Also available as Chapter 23 of

Readings in Artificial Intelligence and Software Engineering, C. Rich and R.

C. Waters (eds.), Morgan Kaufmann, 1986.

[GOM98] A. K. Ghosh, T. O’Connor, and G. McGraw. An automatedapproach for

identifying potential vulnerabilities in software. In1998 IEEE Symposium

70

on Security and Privacy (SSP ’98), pages 104–114, Washington – Brussels –

Tokyo, May 1998. IEEE.

[GRS99] F. Gilham, R. A. Riemenschneider, and V. Stavridou.Secure Interoperation

of Secure Distributed Databases: An Architecture Verification Case Study. In

FM’99 – World Congress on Formal Methods in the Development of Comput-

ing Systems, Volume I, number 1708 in Lecture Notes in Computer Science,

pages 701–717, Toulouse, France, September 1999. Springer-Verlag.

[GSK+01] S. Gupta, N. Savoiu, S. Kim, N.D. Dutt, R. Gupta, and A. Nicolau. Specu-

lation Techniques for High-Level Synthesis of Control-Intensive Designs. In

Design Automation Conference, June 2001.

[HDMT94] X. Hu, J. D’Ambrosio, B. Murray, and D.-L. Tang. Codesign of Architectures

for Automotive Powertrain Modules.IEEE Micro, 14(4):17–25, August 1994.

[HDRS99] J. Herbert, B. Dutertre, R. Riemenschneider, and V. Stavridou. A Formaliza-

tion of Software Architecture. InFM’99 – World Congress on Formal Methods

in the Development of Computing Systems, Volume I, number 1708 in Lecture

Notes in Computer Science, pages 116–133, Toulouse, France, September

1999. Springer-Verlag.

[(HO80] High Order Language Working Group (HOLWG).Requirements for Ada Pro-

gramming Support Environments, STONEMAN. U. S. Department of Defense,

1980.

[IEC95] Draft IEC Standard 1508 - Functional Safety: Safety-Related Systems, April

1995. International Electrotechnical Commission, Technical Committee no.

65, Working Group 9/10 (WG 9/10), IEC 65A.

71

[Irv01] C. Irvine et al. A Case Study in Security Requirements Engineering for a High

Assurance System. InProceedings of the 1st Symposium on Requirements

Engineering for Information Security, Indianapolis, IN, March 2001.

[JMG+02] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney,

and Yanling Wang. Cyclone: A safe dialect of C. InUSENIX Annual Technical

Conference, June 2002.

[KAJW93] S. Kumar, J. Aylor, B. Johnson, and W. Wulf. A Framework for Hard-

ware/Software Codesign.IEEE Computer, 26(12):39–45, December 1993.

[KL94] A. Kalavadee and E. A. Lee. Manifestations of heterogeneity in hard-

ware/software co-design. In M. Lorenzetti, editor,Proceedings of the 31st

Conference on Design Automation, pages 437–438. ACM Press, June 1994.

[Knu94] D. Knuth. Literate Programming.The Computer Journal, 27(2):97–111, May

1994. Also available inLiterate Programming, D. Knuth (ed.), CSLI Lecture

Notes 27, Center for the Study of Language and Information, 1992.

[Lee01] E. Lee. Overview of the Ptolemy Project. Technical Memoran-

dum UCB/ERL M01/12, University of California, Berkeley, March

2001. http://ptolemy.eecs.berkeley.edu/publications/

papers/01/overview/ .

[Lev95] N. G. Leveson.Safeware: System Safety and Computers. Addison-Wesley,

1995.

[LHR01] J. D. Lowrance, I. W. Harrison, and A. C. Rodriguez. Capturing Analytic

Thought. InProc. of the First International Conference on Knowledge Cap-

ture, pages 84–91, New York, October 2001. ACM Press.

72

[LLEL02] X. Liu, J. Liu, J. Eker, and E. Lee. Heterogeneous Modelling and Design of

Control Systems. InSoftware-Enabled Control: Information Technology for

Dynamical Systems, New York, NY, 2002.

[LRS+00] M. Lajolo, M. Rebaudengo, M. Sonza Reorda, M. Violante, and L. Lavagno.

Evaluating System Dependability in a Co-Design Framework.In Proceeed-

ings of DATE’00, Paris, France, March 2000.

[LSV98] L. Lavagno and A. Sangiovanni-Vincentelli. System-Level Design Models

and Implementation Techniques. InProceedings of International Conference

on Application of Concurrency to System Design, 1998.

[LW97] Bev Littlewood and David Wright. A Bayesian model that combines disparate

evidence for the quantitative assessment of system dependability. In Victoria

Stavridou, editor,Mathematics of Dependable Systems II, pages 243–258. Ox-

ford University Press, 1997.

[MA93] L. Lavango M. Chiodo, P. Giusto, H. Hsieh, A. Jurecskaand A. Sangiovanni-

Vincentelli. A Formal Specification Model for Hardware/Software Codesign.

In Proc. International Workshop on Hardware-Software Codesign, October

1993.

[MOD96] Safety Management Requirements for Defence Systems Containing Pro-

grammable Electronics. U.K. Ministry of Defence, August 1996. http:

//www.dstan.mod.uk/ .

[MQRG97] M. Moriconi, X. Qian, R. Riemenschneider, and L. Gong. Secure Software

Architecture. InProceedings of the 1997 IEEE Symposium on Security and

Privacy, pages 84–93, Oakland, CA, May 1997.

73

[MXR95] M. Moriconi, Xiaolei Qian, and R. Riemenschneider.Correct Architecture Re-

finement.IEEE Transactions on Software Engineering, 21(4):356–372, April

1995.

[Neu95] P. G. Neumann.Computer Related Risks. Addison-Wesley (ACM Press),

1995.

[NMW02] George C. Necula, Scott McPeak, and Westley Weimer.CCured: Type-safe

retrofitting of legacy code. InPrinciples of Programming Languages. ACM,

January 2002.

[NP99] P. G. Neumann and P. A. Porras. Experience with EMERALD to date. In

Workshop on Intrusion Detection and Network Monitoring, April 1999.

[OB98] R. Ortega and G. Borriello. Communication Synthesisfor Distributed Embed-

ded Systems. InProceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pages 437–444, San Jose, CA, November 1998.

[Olt01] K. Olthoff. Observations on Security RequirementsEngineering. InPro-

ceedings of the 1st Symposium on Requirements Engineering for Information

Security, Indianapolis, IN, March 2001.

[Pal03] Partha Pal, editor. DPASA Survivability Architecture: Final Design.

DARPA/AFRL, July 2003. Contract No. F30602-02-C-0134.

[PN97] P. Porras and P. Neumann. EMERALD: Event monitoring enabling responses

to anomalous live disturbances. InProceedings of the 20th National Informa-

tion Systems Security Conference, pages 353–365, Baltimore, MD, October

1997.

74

[Pur01] Purdue University Center for Education and Research in Information Assur-

ance and Security (CERIAS).Symposium on Requirements Engineering for

Information Security, March 2001.

[Rie99] R.A. Riemenschneider. Checking the Correctness ofArchitectural Transfor-

mation Steps via Proof-Carrying Architectures. In P. Donahoe, editor,Soft-

ware Architecture. Kluwer Academic Press, 1999.

[Rus01] J. Rushby. Security Requirements Specifications: How and What? InPro-

ceedings of the 1st Symposium on Requirements Engineering for Information

Security, Indianapolis, IN, March 2001.

[San03] William H. Sanders, editor.DPASA Critical Design Review Validation Report.

DARPA/AFRL, July 2003. Contract No. F30602-02-C-0134.

[Sch00] Fred B. Schneider. Enforceable security policies.Information and System

Security, 3(1):30–50, 2000.

[Ste01] P. Stephenson. A Method for Security Requirements Engineering Using a

Standards-Based Network Security Reference Model. InProceedings of the

1st Symposium on Requirements Engineering for InformationSecurity, Indi-

anapolis, IN, March 2001.

[Sub93] P. Subrahmanyam. Hardware-Software Codesign: Cautious Optimism for the

Future (Hot Topics).IEEE Computer, 26(1):84–85, 1993.

[SW01] K. Smith and P. Wu. Design of Future Navy Warships: A Method for the

Development of Security Requirements within an Advanced Computing Sys-

tem. InProceedings of the 1st Symposium on Requirements Engineering for

Information Security, Indianapolis, IN, March 2001.

75

[VAC+01] Alfonso Valdes, Magnus Almgren, Steven Cheung, Yves Deswarte, Bruno

Dutertre, Joshua Levy, Hassen Saı̈di, Victoria Stavridou,and Tomás E. Uribe.

An adaptive intrusion-tolerant server architecture. Technical report, System

Design Laboratory, SRI International, CA, 2001.

[vDL98] A. van Lamweerde, R. Darimont, and E. Letier. Managing Conflicts in Goal-

Driven Requirements Engineering.IEEE Transactions on Software Engineer-

ing, 24(11):908–926, November 1998. Special Issue on Inconsistency Man-

agement in Software Development.

[vDM95] A. van Lamsweerde, R. Darimont, and P. Massonet. Goal-Directed Elabora-

tion of Requirements for a Meeting Scheduler: Problems and Lessons Learnt.

In Proceedings of the 2nd IEEE Symposium on Requirements Engineering,

pages 194–203, March 1995.

[WKM97] S. Wilson, T. Kelly, and J. McDermid. Safety Case Development: Current

Practice, Future Prospects. InSafety and Reliability of Software-Based Sys-

tems – Twelfth Annual CSR Workshop, Bruges, Belgium, 1997.

76

